📓
Study
  • README
  • Application
    • Contest
      • 竞赛trick
  • Basic Know
    • 半监督学习
    • 贝叶斯
      • 朴素贝叶斯分类器
    • 对抗训练
    • 概率图模型
      • CRF
      • HMM
      • 概率图模型
    • 关联分析
    • 归纳偏置
      • [什么是 Inductive bias(归纳偏置)?](BasicKnow/归纳偏置/什么是 Inductive bias(归纳偏置)?.md)
    • 聚类
    • 决策树
    • 绿色深度学习
    • 树模型&集成学习
      • 提升树
      • Ada Boost
      • [集成学习]
    • 特征工程
      • 数据分桶
      • 特征工程概述
      • 特征选择
      • LDA
      • PCA
    • 线性模型
      • 感知机
      • 最大熵模型
      • SVM
        • SVM支持向量机
      • 逻辑回归
      • 线性回归
    • 优化算法
      • 拉格朗日对偶性
      • 牛顿法
        • 牛顿法&拟牛顿法
      • 梯度下降法
        • 梯度下降算法
      • 优化算法
    • 预处理
      • [1-1]正则表达式
      • [1-2]文本预处理
      • [1-3]词性
      • [1-4]语法分析
      • [1-6]文本分类
      • [1-7]网络爬取
      • 【备用】正则表达式
      • 7.re模块
      • 词典匹配
      • 分词
      • 子表达式
      • Todo
    • 主题模型
      • LDA
    • Deep Learning
      • 反向传播
      • 梯度消失&梯度爆炸
      • Batch Size
      • 1.DLbasis
      • 小概念
      • MLstrategy
      • CNN
      • RNN及其应用
      • 关于深度学习实践
      • 神经网络概述
      • Batch Normalization
      • Program CNN
      • Program D Lbasis
      • Program DN Nimprove
      • Program Neural Style Transfer
      • Summer DL
    • EM算法
    • GAN
      • Gans In Action Master
    • GNN
      • 搜广推之GNN
      • Representation Learning
        • Anomalydetection
        • Conclusion
        • Others
        • Papernotes
        • Recommadation
    • k近邻法
      • K近邻
    • Language Model
      • 语言模型解码采样策略
      • [1-1][语言模型]从N-gram模型讲起
      • [1-2][语言模型]NNLM(神经网络语言模型)
      • [1-3][语言模型]基于RNN的语言模型
      • [1-4][语言模型]用N-gram来做完形填空
      • [1-5][语言模型]用KenLM来做完形填空
    • Loss Function
      • 常用损失函数
      • Focal Loss
      • softmax+交叉熵
    • Machine Learning
      • [基础]概念
      • 待整合
      • 交叉验证
      • 无监督学习
      • 优缺点
      • ML Yearning
      • SVD
    • Statistics Math
      • 程序员的数学基础课
      • 数学基础
      • 统计&高数
      • 统计题目
      • 线性代数
      • 组合数学
      • Discrete Choice Model
      • Nested Choice Model
  • Course Note
    • 基于TensorFlow的机器学习速成课程
      • [Key ML Terminology](CourseNote/基于TensorFlow的机器学习速成课程/Key ML Terminology.md)
    • 集训营
      • 任务说明
      • 算法实践1.1模型构建
      • 算法实践1.2模型构建之集成模型
      • 算法实践2.1数据预处理
    • 李宏毅机器学习
      • 10DNN训练Tips
        • Chapter 18
      • 16无监督学习
        • Chapter 25
    • 贪心NLP
      • 贪心NLP笔记
    • Cs 224 N 2019
      • [A Simple But Tough To Beat Baseline For Sentence Embeddings](CourseNote/cs224n2019/A Simple but Tough-to-beat Baseline for Sentence Embeddings.md)
      • [Lecture 01 Introduction And Word Vectors](CourseNote/cs224n2019/Lecture 01 Introduction and Word Vectors.md)
      • [Lecture 02 Word Vectors 2 And Word Senses](CourseNote/cs224n2019/Lecture 02 Word Vectors 2 and Word Senses.md)
      • [Lecture 03 Word Window Classification Neural Networks And Matrix Calculus](CourseNote/cs224n2019/Lecture 03 Word Window Classification, Neural Networks, and Matrix Calculus.md)
      • [Lecture 04 Backpropagation And Computation Graphs](CourseNote/cs224n2019/Lecture 04 Backpropagation and Computation Graphs.md)
      • [Lecture 05 Linguistic Structure Dependency Parsing](CourseNote/cs224n2019/Lecture 05 Linguistic Structure Dependency Parsing.md)
      • [Lecture 06 The Probability Of A Sentence Recurrent Neural Networks And Language Models](CourseNote/cs224n2019/Lecture 06 The probability of a sentence Recurrent Neural Networks and Language Models.md)
      • Stanford NLP
    • Deep Learning Book Goodfellow
      • Books
        • Deep Learning Book Chapter Summaries Master
      • 提纲
      • C 5
      • C 6
      • [Part I Applied Math And Machine Learning Basics](CourseNote/Deep-Learning-Book-Goodfellow/Part I - Applied Math and Machine Learning basics.md)
    • Lihang
    • NLP实战高手课
      • 极客时间_NLP实战高手课
    • 工具&资料
    • 机器学习、深度学习面试知识点汇总
    • 七月kaggle课程
    • 算法工程师
    • 贪心科技机器学习必修知识点特训营
    • 唐宇迪机器学习
    • 语言及工具
    • AI技术内参
    • Suggestions
  • Data Related
    • 数据质量
      • 置信学习
    • 自然语言处理中的数据增广_车万翔
      • 自然语言处理中的数据增广
    • Mixup
    • 数据不均衡问题
    • 数据增强的方法
  • Knowledge Graph
    • Information Extraction
      • 联合抽取
        • PRGC
      • Code
        • BERT微调
      • NER
        • 阅读理解做NER
          • MRC
        • FLAT
        • Global Pointer
        • 命名实体识别NER
    • Keyword Extraction
      • 关键词抽取
    • 小米在知识表示学习的探索与实践
    • KG
  • Multi Task
    • EXT 5
      • Ex T 5
  • NLG
    • Dailogue
      • 比赛
        • 对话评估比赛
          • [simpread-DSTC10 开放领域对话评估比赛冠军方法总结](NLG/Dailogue/比赛/对话评估比赛/simpread-DSTC10 开放领域对话评估比赛冠军方法总结.md)
      • 任务型对话
        • DST
          • DST概述
        • NLG
          • NLG概述
        • NLU
          • NLU概述
        • 任务型对话概述
        • simpread-任务型对话系统预训练最新研究进展
      • 问答型对话
        • 检索式问答
          • 基于预训练模型的检索式对话系统
          • 检索式文本问答
        • 业界分享
          • 低资源场景下的知识图谱表示学习和问答_阿里_李杨
          • QQ浏览器搜索智能问答
        • 问答型对话系统概述
      • 闲聊型对话
        • 闲聊型对话系统概述
      • 业界分享
        • 人工智能与心理咨询
        • 腾讯多轮对话机器人
        • 微软小冰
        • 小布助手闲聊生成式算法
        • 美团智能客服实践_江会星
        • 去哪儿智能客服探索和实践
        • 实时语音对话场景下的算法实践_阿里_陈克寒
        • 智能语音交互中的无效query识别_小米_崔世起
        • UNIT智能对话
      • 主动对话
      • EVA
        • EVA分享
        • EVA模型
      • PLATO
      • RASA
    • Machine Translation
      • 业界分享
        • 爱奇艺台词翻译分享
      • Paper
        • Deep Encoder Shallow Decoder
    • RAGRelated
    • Text 2 SQL
      • M SQL
        • [M SQL 2](NLG/Text2SQL/M-SQL/M-SQL (2).md)
      • [Text2SQL Baseline解析](NLG/Text2SQL/Text2SQL Baseline解析.md)
      • Text 2 SQL
    • Text Summarization
      • [文本摘要][paper]CTRLSUM
      • 文本摘要
  • Pre Training
    • 业界分享
      • 超大语言模型与语言理解_黄民烈
        • 超大语言模型与语言理解
      • 大模型的加速算法_腾讯微信
        • 大模型的加速算法
      • 孟子轻量化预训练模型
      • 悟道文汇文图生成模型
      • 悟道文澜图文多模态大模型
      • 语义驱动可视化内容创造_微软
        • 语义驱动可视化内容创造
    • Base
      • Attention
      • Mask
        • NLP中的Mask
      • Position Encoding
        • 位置编码
    • BERT
      • ALBERT
      • Bert
        • Venv
          • Lib
            • Site Packages
              • idna-3.2.dist-info
                • LICENSE
              • Markdown-3.3.4.dist-info
                • LICENSE
              • Tensorflow
                • Include
                  • External
                    • Libjpeg Turbo
                      • LICENSE
                  • Unsupported
                    • Eigen
                      • CXX 11
                        • Src
                          • Tensor
              • Werkzeug
                • Debug
                  • Shared
                    • ICON LICENSE
        • CONTRIBUTING
        • Multilingual
      • Ro BER Ta
      • BERT
      • BERT面试问答
      • BERT源码解析
      • NSP BERT
    • BERT Flow
    • BERT Zip
      • Distilling The Knowledge In A Neural Network
      • TINYBERT
      • 模型压缩
    • CPM
    • CPT
      • 兼顾理解和生成的中文预训练模型CPT
    • ELECTRA
    • EL Mo
    • ERNIE系列语言模型
    • GPT
    • MBART
    • NEZHA
    • NLG Sum
      • [simpread-预训练时代下的文本生成|模型 & 技巧](Pre-training/NLGSum/simpread-预训练时代下的文本生成|模型 & 技巧.md)
    • Prompt
      • 预训练模型的提示学习方法_刘知远
        • 预训练模型的提示学习方法
    • T 5
      • Unified SKG
      • T 5
    • Transformer
    • Uni LM
    • XL Net
    • 预训练语言模型
    • BERT变种
  • Recsys
    • 多任务Multi-task&推荐
    • 推荐介绍
    • 推荐系统之召回与精排
      • 代码
        • Python
          • Recall
            • Deep Match Master
              • Docs
                • Source
                  • Examples
                  • FAQ
                  • Features
                  • History
                  • Model Methods
                  • Quick Start
    • 业界分享
      • 腾讯基于知识图谱长视频推荐
    • 召回
    • Sparrow Rec Sys
    • 深度学习推荐系统实战
    • 推荐模型
    • Deep FM
  • Search
    • 搜索
    • 业界分享
      • 爱奇艺搜索排序算法实践
      • 语义搜索技术和应用
    • 查询关键字理解
    • 搜索排序
    • BM 25
    • KDD21-淘宝搜索中语义向量检索技术
    • query理解
    • TFIDF
  • Self Supervised Learning
    • Contrastive Learning
      • 业界分享
        • 对比学习在微博内容表示的应用_张俊林
      • Paper
      • R Drop
      • Sim CSE
    • 自监督学习
  • Text Classification
    • [多标签分类(Multi-label Classification)](TextClassification/多标签分类(Multi-label Classification)/多标签分类(Multi-label Classification).md)
    • Fast Text
    • Text CNN
    • 文本分类
  • Text Matching
    • 文本匹配和多轮检索
    • CNN SIM
    • Word Embedding
      • Skip Gram
      • Glove
      • Word 2 Vec
    • 文本匹配概述
  • Tool
    • 埋点
    • 向量检索(Faiss等)
    • Bigdata
      • 大数据基础task1_创建虚拟机+熟悉linux
      • 任务链接
      • Mr
      • Task1参考答案
      • Task2参考答案
      • Task3参考答案
      • Task4参考答案
      • Task5参考答案
    • Docker
    • Elasticsearch
    • Keras
    • Numpy
    • Python
      • 可视化
        • Interactivegraphics
        • Matplotlib
        • Tkinter
        • Turtle
      • 数据类型
        • Datatype
      • python爬虫
        • Python Scraping Master
          • phantomjs-2.1.1-windows
        • Regularexp
        • Scrapying
        • Selenium
      • 代码优化
      • 一行代码
      • 用python进行语言检测
      • Debug
      • Exception
      • [Features Tricks](Tool/python/Features & Tricks.md)
      • Fileprocess
      • Format
      • Functional Programming
      • I Python
      • Magic
      • Math
      • Os
      • Others
      • Pandas
      • Python Datastructure
      • Python操作数据库
      • Streamlit
      • Time
    • Pytorch
      • Dive Into DL Py Torch
        • 02 Softmax And Classification
        • 03 Mlp
        • 04 Underfit Overfit
        • 05 Gradient Vanishing Exploding
        • 06 Text Preprocess
        • 07 Language Model
        • 08 Rnn Basics
        • 09 Machine Translation
        • 10 Attention Seq 2 Seq
        • 11 Transformer
        • 12 Cnn
        • 14 Batchnorm Resnet
        • 15 Convexoptim
        • 16 Gradientdescent
        • 17 Optim Advance
    • Spark
      • Pyspark
        • pyspark之填充缺失的时间数据
      • Spark
    • SQL
      • 数据库
      • Hive Sql
      • MySQL实战45讲
    • Tensor Flow
      • TensorFlow入门
  • Common
  • NLP知识体系
Powered by GitBook
On this page
  • 语法分析器
  • 依存分析
  • 组块化
  • 信息抽取

Was this helpful?

  1. Basic Know
  2. 预处理

[1-4]语法分析

上下文无关文法(Context-Free Grammar, CFG)

# toy CFG 
>>> from nltk import CFG
>>>toy_grammar = 
nltk.CFG.fromstring(
"""
  S -> NP VP  		 # S indicate the entire sentence   
  VP -> V NP              # VP is verb phrase the 
  V -> "eats" | "drinks"  # V is verb we are using only 2 verbs      in the example
  NP -> Det N   # NP is noun phrase (chunk that has noun in it)
  Det -> "a" | "an" | "the" # Det is determiner used in the sentences 
  N -> "president" |"Obama" |"apple"| "coke"  # N some example nouns 
   """)
>>> toy_grammar.productions()

语法分析器通过使用一组语法规则,处理输入字符串,形成构建语法概念的一个或多个规则。语法是一种声明句子结构的完整的规范。语法分析器对语法进行了程序性解释。语法分析器通过搜索各种树空间,找到给定句子的最优树。

概率CFG

# similarly a PCFG also can be built 

>>> from nltk import PCFG
>>> toy_pcfg1 = PCFG.fromstring("""
	S -> NP VP [1.0]
	NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15]
	Det -> 'the' [0.8] | 'my' [0.2]
	N -> 'man' [0.5] | 'telescope' [0.5]
	VP -> VP PP [0.1] | V NP [0.7] | V [0.2]
	V -> 'ate' [0.35] | 'saw' [0.65]
	PP -> P NP [1.0]
	P -> 'with' [0.61] | 'under' [0.39]
	""")
# ref :http://www.nltk.org/howto/grammar.html

语法分析器

递归下降的语法分析器

递归下降的语法分析是一种最简单的语法分析形式,这是一种自上而下的方法。当语法分析器从左至右读取字符串时,它试图验证输入流的语法是正确的。所需的基本操作涉及从输入流中读取字符,并将它们与语法中(描述输入句法)的终端符号进行匹配。当递归下降语法分析器获得正确的匹配时,会向前看一个字符,并将输入流的读取指针向前移动。

移位归约语法分析器

一种简单的自上而下的语法分析器。移位归约语法分析器试图找到对应于文法产生式右侧的一系列单词和短语,并使用产生式左侧的内容取代它们,直到整个句子得到归约。

图表语法分析器

应用动态规划的算法设计技术,保存中间结果,即存储语法分析任务的部分解决方案,然后在有必要时,允许我们查看这些中间结果,以便我们高效地得到完整的解决方案。

正则表达式语法分析器

使用以语法形式定义的正则表达式,在标注了POS的字符串上工作。语法分析器使用这些正则表达式,分析给定的句子,生成相应的语法分析树。

# Regex parser

>>> chunk_rules=ChunkRule("<.*>+","chunk everything")
>>> import nltk
>>> from nltk.chunk.regexp import *
>>> reg_parser = RegexpParser('''
 		NP: {<DT>? <JJ>* <NN>*} # NP
  		 P: {<IN>}              # Preposition
             V: {<V.*>}             # Verb
  	      PP: {<P> <NP>}          # PP -> P NP
   	      VP: {<V> <NP|PP>*}  # VP -> V (NP|PP)*
  ''')
>>> test_sent="Mr. Obama played a big role in the Health insurance bill" 
>>> test_sent_pos=nltk.pos_tag(nltk.word_tokenize(test_sent))
>>> paresed_out=reg_parser.parse(test_sent_pos)

依存分析

依存分析(Dependency Parsing, DP)是一种现代的语法分析机制。依存分析的主要概念是每个语言单位(单词)使用有向链路。在语言学上,这些链路称为依存(dependency)。

短语结构语法生成的分析树试图捕捉单词和短语之间的关系,并试图最终捕捉到短语之间的关系。然而,依存树只关注单词之间的依存性。

# Stanford Parser [Very useful]

>>>from nltk.parse.stanford import StanfordParser
>>>english_parser = StanfordParser('stanford-parser.jar', 'stanford-parser-3.4-models.jar')
>>>english_parser.raw_parse_sents(("this is the english parser test")

组块化

组块化是浅层次的语法分析,在组块化过程中,我们不试图触及句子的深层结构,而是试图联合句子中具有意义的一些组块。

可以将组块(chunk)定义为可处理的最小单元。例如一句话可以分为两个组块:名词短语(NP),动词短语(VP)。

# Chunking 

>>>from nltk.chunk.regexp import *
>>>test_sent="The prime minister announced he had asked the chief government whip, Philip Ruddock, to call a special party room meeting for 9am on Monday to consider the spill motion."
>>>test_sent_pos=nltk.pos_tag(nltk.word_tokenize(test_sent))
>>>rule_vp = ChunkRule(r'(<VB.*>)?(<VB.*>)+(<PRP>)?', 'Chunk VPs')
>>>parser_vp = RegexpChunkParser([rule_vp],chunk_label='VP')
>>>print parser_vp.parse(test_sent_pos)    

>>>rule_np = ChunkRule(r'(<DT>?<RB>?)?<JJ|CD>*(<JJ|CD><,>)*(<NN.*>)+', 'Chunk NPs')
>>>parser_np = RegexpChunkParser([rule_np],chunk_label="NP")
>>>print parser_np.parse(test_sent_pos) 

信息抽取

原始文本——分句——分词——POS标注——输入检测——关系提取——关系

命名实体识别

# NP chunking (NER)

>>>f=open(# absolute path for the file of text for which we want NER)
>>>text=f.read()
>>>sentences = nltk.sent_tokenize(text)
>>>tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in sentences]
>>>tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_sentences]
>>>for sent in tagged_sentences:
>>>		print nltk.ne_chunk(sent)

关系抽取

# Relation Extraction 

>>>import re
>>>IN = re.compile(r'.*\bin\b(?!\b.+ing)')
>>>for doc in nltk.corpus.ieer.parsed_docs('NYT_19980315'):
>>>	for rel in nltk.sem.extract_rels('ORG', 'LOC', doc, corpus='ieer', pattern = IN):
>>>print(nltk.sem.rtuple(rel))

指定我们需要的关系模式,以及我们希望关系定义的NER类型。

Previous[1-3]词性Next[1-6]文本分类

Last updated 3 years ago

Was this helpful?