📓
Study
  • README
  • Application
    • Contest
      • 竞赛trick
  • Basic Know
    • 半监督学习
    • 贝叶斯
      • 朴素贝叶斯分类器
    • 对抗训练
    • 概率图模型
      • CRF
      • HMM
      • 概率图模型
    • 关联分析
    • 归纳偏置
      • [什么是 Inductive bias(归纳偏置)?](BasicKnow/归纳偏置/什么是 Inductive bias(归纳偏置)?.md)
    • 聚类
    • 决策树
    • 绿色深度学习
    • 树模型&集成学习
      • 提升树
      • Ada Boost
      • [集成学习]
    • 特征工程
      • 数据分桶
      • 特征工程概述
      • 特征选择
      • LDA
      • PCA
    • 线性模型
      • 感知机
      • 最大熵模型
      • SVM
        • SVM支持向量机
      • 逻辑回归
      • 线性回归
    • 优化算法
      • 拉格朗日对偶性
      • 牛顿法
        • 牛顿法&拟牛顿法
      • 梯度下降法
        • 梯度下降算法
      • 优化算法
    • 预处理
      • [1-1]正则表达式
      • [1-2]文本预处理
      • [1-3]词性
      • [1-4]语法分析
      • [1-6]文本分类
      • [1-7]网络爬取
      • 【备用】正则表达式
      • 7.re模块
      • 词典匹配
      • 分词
      • 子表达式
      • Todo
    • 主题模型
      • LDA
    • Deep Learning
      • 反向传播
      • 梯度消失&梯度爆炸
      • Batch Size
      • 1.DLbasis
      • 小概念
      • MLstrategy
      • CNN
      • RNN及其应用
      • 关于深度学习实践
      • 神经网络概述
      • Batch Normalization
      • Program CNN
      • Program D Lbasis
      • Program DN Nimprove
      • Program Neural Style Transfer
      • Summer DL
    • EM算法
    • GAN
      • Gans In Action Master
    • GNN
      • 搜广推之GNN
      • Representation Learning
        • Anomalydetection
        • Conclusion
        • Others
        • Papernotes
        • Recommadation
    • k近邻法
      • K近邻
    • Language Model
      • 语言模型解码采样策略
      • [1-1][语言模型]从N-gram模型讲起
      • [1-2][语言模型]NNLM(神经网络语言模型)
      • [1-3][语言模型]基于RNN的语言模型
      • [1-4][语言模型]用N-gram来做完形填空
      • [1-5][语言模型]用KenLM来做完形填空
    • Loss Function
      • 常用损失函数
      • Focal Loss
      • softmax+交叉熵
    • Machine Learning
      • [基础]概念
      • 待整合
      • 交叉验证
      • 无监督学习
      • 优缺点
      • ML Yearning
      • SVD
    • Statistics Math
      • 程序员的数学基础课
      • 数学基础
      • 统计&高数
      • 统计题目
      • 线性代数
      • 组合数学
      • Discrete Choice Model
      • Nested Choice Model
  • Course Note
    • 基于TensorFlow的机器学习速成课程
      • [Key ML Terminology](CourseNote/基于TensorFlow的机器学习速成课程/Key ML Terminology.md)
    • 集训营
      • 任务说明
      • 算法实践1.1模型构建
      • 算法实践1.2模型构建之集成模型
      • 算法实践2.1数据预处理
    • 李宏毅机器学习
      • 10DNN训练Tips
        • Chapter 18
      • 16无监督学习
        • Chapter 25
    • 贪心NLP
      • 贪心NLP笔记
    • Cs 224 N 2019
      • [A Simple But Tough To Beat Baseline For Sentence Embeddings](CourseNote/cs224n2019/A Simple but Tough-to-beat Baseline for Sentence Embeddings.md)
      • [Lecture 01 Introduction And Word Vectors](CourseNote/cs224n2019/Lecture 01 Introduction and Word Vectors.md)
      • [Lecture 02 Word Vectors 2 And Word Senses](CourseNote/cs224n2019/Lecture 02 Word Vectors 2 and Word Senses.md)
      • [Lecture 03 Word Window Classification Neural Networks And Matrix Calculus](CourseNote/cs224n2019/Lecture 03 Word Window Classification, Neural Networks, and Matrix Calculus.md)
      • [Lecture 04 Backpropagation And Computation Graphs](CourseNote/cs224n2019/Lecture 04 Backpropagation and Computation Graphs.md)
      • [Lecture 05 Linguistic Structure Dependency Parsing](CourseNote/cs224n2019/Lecture 05 Linguistic Structure Dependency Parsing.md)
      • [Lecture 06 The Probability Of A Sentence Recurrent Neural Networks And Language Models](CourseNote/cs224n2019/Lecture 06 The probability of a sentence Recurrent Neural Networks and Language Models.md)
      • Stanford NLP
    • Deep Learning Book Goodfellow
      • Books
        • Deep Learning Book Chapter Summaries Master
      • 提纲
      • C 5
      • C 6
      • [Part I Applied Math And Machine Learning Basics](CourseNote/Deep-Learning-Book-Goodfellow/Part I - Applied Math and Machine Learning basics.md)
    • Lihang
    • NLP实战高手课
      • 极客时间_NLP实战高手课
    • 工具&资料
    • 机器学习、深度学习面试知识点汇总
    • 七月kaggle课程
    • 算法工程师
    • 贪心科技机器学习必修知识点特训营
    • 唐宇迪机器学习
    • 语言及工具
    • AI技术内参
    • Suggestions
  • Data Related
    • 数据质量
      • 置信学习
    • 自然语言处理中的数据增广_车万翔
      • 自然语言处理中的数据增广
    • Mixup
    • 数据不均衡问题
    • 数据增强的方法
  • Knowledge Graph
    • Information Extraction
      • 联合抽取
        • PRGC
      • Code
        • BERT微调
      • NER
        • 阅读理解做NER
          • MRC
        • FLAT
        • Global Pointer
        • 命名实体识别NER
    • Keyword Extraction
      • 关键词抽取
    • 小米在知识表示学习的探索与实践
    • KG
  • Multi Task
    • EXT 5
      • Ex T 5
  • NLG
    • Dailogue
      • 比赛
        • 对话评估比赛
          • [simpread-DSTC10 开放领域对话评估比赛冠军方法总结](NLG/Dailogue/比赛/对话评估比赛/simpread-DSTC10 开放领域对话评估比赛冠军方法总结.md)
      • 任务型对话
        • DST
          • DST概述
        • NLG
          • NLG概述
        • NLU
          • NLU概述
        • 任务型对话概述
        • simpread-任务型对话系统预训练最新研究进展
      • 问答型对话
        • 检索式问答
          • 基于预训练模型的检索式对话系统
          • 检索式文本问答
        • 业界分享
          • 低资源场景下的知识图谱表示学习和问答_阿里_李杨
          • QQ浏览器搜索智能问答
        • 问答型对话系统概述
      • 闲聊型对话
        • 闲聊型对话系统概述
      • 业界分享
        • 人工智能与心理咨询
        • 腾讯多轮对话机器人
        • 微软小冰
        • 小布助手闲聊生成式算法
        • 美团智能客服实践_江会星
        • 去哪儿智能客服探索和实践
        • 实时语音对话场景下的算法实践_阿里_陈克寒
        • 智能语音交互中的无效query识别_小米_崔世起
        • UNIT智能对话
      • 主动对话
      • EVA
        • EVA分享
        • EVA模型
      • PLATO
      • RASA
    • Machine Translation
      • 业界分享
        • 爱奇艺台词翻译分享
      • Paper
        • Deep Encoder Shallow Decoder
    • RAGRelated
    • Text 2 SQL
      • M SQL
        • [M SQL 2](NLG/Text2SQL/M-SQL/M-SQL (2).md)
      • [Text2SQL Baseline解析](NLG/Text2SQL/Text2SQL Baseline解析.md)
      • Text 2 SQL
    • Text Summarization
      • [文本摘要][paper]CTRLSUM
      • 文本摘要
  • Pre Training
    • 业界分享
      • 超大语言模型与语言理解_黄民烈
        • 超大语言模型与语言理解
      • 大模型的加速算法_腾讯微信
        • 大模型的加速算法
      • 孟子轻量化预训练模型
      • 悟道文汇文图生成模型
      • 悟道文澜图文多模态大模型
      • 语义驱动可视化内容创造_微软
        • 语义驱动可视化内容创造
    • Base
      • Attention
      • Mask
        • NLP中的Mask
      • Position Encoding
        • 位置编码
    • BERT
      • ALBERT
      • Bert
        • Venv
          • Lib
            • Site Packages
              • idna-3.2.dist-info
                • LICENSE
              • Markdown-3.3.4.dist-info
                • LICENSE
              • Tensorflow
                • Include
                  • External
                    • Libjpeg Turbo
                      • LICENSE
                  • Unsupported
                    • Eigen
                      • CXX 11
                        • Src
                          • Tensor
              • Werkzeug
                • Debug
                  • Shared
                    • ICON LICENSE
        • CONTRIBUTING
        • Multilingual
      • Ro BER Ta
      • BERT
      • BERT面试问答
      • BERT源码解析
      • NSP BERT
    • BERT Flow
    • BERT Zip
      • Distilling The Knowledge In A Neural Network
      • TINYBERT
      • 模型压缩
    • CPM
    • CPT
      • 兼顾理解和生成的中文预训练模型CPT
    • ELECTRA
    • EL Mo
    • ERNIE系列语言模型
    • GPT
    • MBART
    • NEZHA
    • NLG Sum
      • [simpread-预训练时代下的文本生成|模型 & 技巧](Pre-training/NLGSum/simpread-预训练时代下的文本生成|模型 & 技巧.md)
    • Prompt
      • 预训练模型的提示学习方法_刘知远
        • 预训练模型的提示学习方法
    • T 5
      • Unified SKG
      • T 5
    • Transformer
    • Uni LM
    • XL Net
    • 预训练语言模型
    • BERT变种
  • Recsys
    • 多任务Multi-task&推荐
    • 推荐介绍
    • 推荐系统之召回与精排
      • 代码
        • Python
          • Recall
            • Deep Match Master
              • Docs
                • Source
                  • Examples
                  • FAQ
                  • Features
                  • History
                  • Model Methods
                  • Quick Start
    • 业界分享
      • 腾讯基于知识图谱长视频推荐
    • 召回
    • Sparrow Rec Sys
    • 深度学习推荐系统实战
    • 推荐模型
    • Deep FM
  • Search
    • 搜索
    • 业界分享
      • 爱奇艺搜索排序算法实践
      • 语义搜索技术和应用
    • 查询关键字理解
    • 搜索排序
    • BM 25
    • KDD21-淘宝搜索中语义向量检索技术
    • query理解
    • TFIDF
  • Self Supervised Learning
    • Contrastive Learning
      • 业界分享
        • 对比学习在微博内容表示的应用_张俊林
      • Paper
      • R Drop
      • Sim CSE
    • 自监督学习
  • Text Classification
    • [多标签分类(Multi-label Classification)](TextClassification/多标签分类(Multi-label Classification)/多标签分类(Multi-label Classification).md)
    • Fast Text
    • Text CNN
    • 文本分类
  • Text Matching
    • 文本匹配和多轮检索
    • CNN SIM
    • Word Embedding
      • Skip Gram
      • Glove
      • Word 2 Vec
    • 文本匹配概述
  • Tool
    • 埋点
    • 向量检索(Faiss等)
    • Bigdata
      • 大数据基础task1_创建虚拟机+熟悉linux
      • 任务链接
      • Mr
      • Task1参考答案
      • Task2参考答案
      • Task3参考答案
      • Task4参考答案
      • Task5参考答案
    • Docker
    • Elasticsearch
    • Keras
    • Numpy
    • Python
      • 可视化
        • Interactivegraphics
        • Matplotlib
        • Tkinter
        • Turtle
      • 数据类型
        • Datatype
      • python爬虫
        • Python Scraping Master
          • phantomjs-2.1.1-windows
        • Regularexp
        • Scrapying
        • Selenium
      • 代码优化
      • 一行代码
      • 用python进行语言检测
      • Debug
      • Exception
      • [Features Tricks](Tool/python/Features & Tricks.md)
      • Fileprocess
      • Format
      • Functional Programming
      • I Python
      • Magic
      • Math
      • Os
      • Others
      • Pandas
      • Python Datastructure
      • Python操作数据库
      • Streamlit
      • Time
    • Pytorch
      • Dive Into DL Py Torch
        • 02 Softmax And Classification
        • 03 Mlp
        • 04 Underfit Overfit
        • 05 Gradient Vanishing Exploding
        • 06 Text Preprocess
        • 07 Language Model
        • 08 Rnn Basics
        • 09 Machine Translation
        • 10 Attention Seq 2 Seq
        • 11 Transformer
        • 12 Cnn
        • 14 Batchnorm Resnet
        • 15 Convexoptim
        • 16 Gradientdescent
        • 17 Optim Advance
    • Spark
      • Pyspark
        • pyspark之填充缺失的时间数据
      • Spark
    • SQL
      • 数据库
      • Hive Sql
      • MySQL实战45讲
    • Tensor Flow
      • TensorFlow入门
  • Common
  • NLP知识体系
Powered by GitBook
On this page
  • 简介
  • 模型结构
  • 实验及结论
  • 总结
  • 参考资料

Was this helpful?

  1. Pre Training

ELECTRA

Previous兼顾理解和生成的中文预训练模型CPTNextEL Mo

Last updated 2 years ago

Was this helpful?

ELECTRA:Pre-training Text Encoders as Discriminators Rather Than Generator

https://github.com/google-research/electra

简介

ELECTRA的全称是Efficiently Learning an Encoder that Classifies Token Replacements Accurately,先来直观感受一下ELECTRA的效果:

右边的图是左边的放大版,纵轴是GLUE分数,横轴是FLOPs (floating point operations),Tensorflow中提供的浮点数计算量统计。从上图可以看到,同等量级的ELECTRA是一直碾压BERT的,而且在训练更长的步数之后,达到了当时的SOTA模型——RoBERTa的效果。从左图曲线上也可以看到,ELECTRA效果还有继续上升的空间。

ELECTRA 的创新点在于:

  • 提出了新的模型预训练的框架,采用generator和discriminator的结合方式,但又不同于GAN

  • 将Masked Language Model的方式改为了replaced token detection

  • 因为masked language model 能有效地学习到context的信息,所以能很好地学习embedding,所以使用了weight sharing的方式将generator的embedding的信息共享给discriminator

  • dicriminator 预测了generator输出的每个token是不是original的,从而高效地更新transformer的各个参数,使得模型的熟练速度加快

  • 该模型采用了小的generator以及discriminator的方式共同训练,并且采用了两者loss相加,使得discriminator的学习难度逐渐地提升,学习到更难的token(plausible tokens)

  • 模型在fine-tuning 的时候,丢弃generator,只使用discriminator

ELECTRA的论文指出,自己的模型效果能够达到state-of-the-art,但是在真正的GELU 榜单上,还是敌不过Roberta等模型。但是在小模型的表现上,我们可以发现ELECTRA的效果确实更加地好,所以ELECTRA的目前的作用主要:

  • 可以利用这个框架,自己训练一个预训练模型,单个GPU就可以训练得到一个小的语言模型,然后在特定的领域可以得到更优的结果,然后再在这个领域下进行特定任务的finetuning。

  • 使用小的ELECTRA模型,在不能使用GPU的场景,或者性能要求高的场景,可以得到好的结果

  • ELECTRA的效果在多分类上不如Roberta,可能与预训练时采用的是二分类任务有关。

模型结构

NLP式的Generator-Discriminator

  • BERT的MLM的实现,并不是非常高效的,只有15%的tokens对参数的更新有用,其他的85%是不参与gradients的update的

  • 并且存在了预训练和fine-tuning的mismatch,因为在fine-tuning阶段,并不会有[MASK]的token。

ELECTRA提出了新的预训练任务和框架,把生成式的Masked language model(MLM)预训练任务改成了判别式的Replaced token detection(RTD)任务,判断当前token是否被语言模型替换过。那么问题来了,我随机替换一些输入中的字词,再让BERT去预测是否替换过可以吗?可以的,但效果并不好,因为随机替换太简单了。

那怎样使任务复杂化呢?。。。咦,咱们不是有预训练一个MLM模型吗?

于是作者就干脆使用一个MLM的G-BERT来对输入句子进行更改,然后丢给D-BERT去判断哪个字被改过,如下:

该模型由两部分组成,分别是generator以及discriminator,两个都是transformer的encoder结构,只是两者的size不同:

  • generator:就是一个小的 masked language model(通常是 1/4 的discriminator的size),该模块的具体作用是他采用了经典的bert的MLM方式:

    • 首先随机选取15%的tokens,替代为[MASK]token,(取消了bert的80%[MASK],10%unchange, 10% random replaced 的操作,具体原因也是因为没必要,因为我们finetuning使用的discriminator)

    • 使用generator去训练模型,使得模型预测masked token,得到corrupted tokens

    • generator的目标函数和bert一样,都是希望被masked的能够被还原成原本的original tokens.如上图, token,the 和 cooked 被随机选为被masked,然后generator预测得到corrupted tokens,变成了the和ate

  • discriminator:discriminator的接收被generator corrupt之后的输入,discriminator的作用是分辨输入的每一个token是original的还是replaced,注意:如果generator生成的token和原始token一致,那么这个token仍然是original的

    • 所以,对于每个token,discriminator都会进行一个二分类,最后获得loss

Replaced Token Detection

但上述结构有个问题,输入句子经过生成器,输出改写过的句子,因为句子的字词是离散的,所以梯度在这里就断了,判别器的梯度无法传给生成器,于是生成器的训练目标还是MLM(作者在后文也验证了这种方法更好),判别器的目标是序列标注(判断每个token是真是假),两者同时训练,但判别器的梯度不会传给生成器,目标函数如下:

因为判别器的任务相对来说容易些,RTD loss相对MLM loss会很小,因此加上一个系数,作者训练时使用了50。

另外要注意的一点是,在优化判别器时计算了所有token上的loss,而以往计算BERT的MLM loss时会忽略没被mask的token。作者在后来的实验中也验证了在所有token上进行loss计算会提升效率和效果。

事实上,ELECTRA使用的Generator-Discriminator架构与GAN还是有不少差别,作者列出了如下几点:

GAN 的训练是训练一个generator 产生结果,去骗过discriminator。所以generator的产生结果,在discriminator的都会认为是假的。

  • 在我们的训练过程中,如果generator 产生的token和original token一样,discriminator应该认为这个token是real的

  • generator是按照最大似然训练的,和discriminator 并没有交互

  • generator 不是用来fool discriminator。

  • generator的输入是真实文本,而GAN的输入是随机噪声

  • discriminator的梯度不会传到generator,而GAN的梯度是会从discriminator传到generator的

实验及结论

Weight Sharing

生成器和判别器的权重共享是否可以提升效果呢?作者设置了相同大小的生成器和判别器,在不共享权重下的效果是83.6,只共享token embedding层的效果是84.3,共享所有权重的效果是84.4。作者认为生成器对embedding有更好的学习能力,因为在计算MLM时,softmax是建立在所有vocab上的,之后反向传播时会更新所有embedding,而判别器只会更新输入的token embedding。最后作者只使用了embedding sharing。

generator和discriminator的weight 存在共享,但是并不是所有的参数都共享,如果是这样的话,那需要两者的size一样,所以模型采用了共享generator的embedding 权重。

为什么会选择共享embedding 权重呢,主要的原因是generator采用的MLM的方式训练,MLM根据token周围的context预测该token,可以很好地学习到embedding的表示。discriminator 只更新input或者被 generator sample 的tokens(因为2分类),而generator的softmax over vocabulary 会更新所有的token embeddings。然而在此基础上,replaced token detection 从所有的input tokens都做更新,所以参数更新的更有效率。两者结合,就产生了更好的结果。

Smaller Generators

从权重共享的实验中看到,生成器和判别器只需要共享embedding的权重就足矣了,那这样的话是否可以缩小生成器的尺寸进行训练效率提升呢?作者在保持原有hidden size的设置下减少了层数,得到了下图所示的关系图:

可以看到,生成器的大小在判别器的1/4到1/2之间效果是最好的。作者认为原因是过强的生成器会增大判别器的难度(判别器:小一点吧,我太难了)。

Training Algorithms

实际上除了MLM loss,作者也尝试了另外两种训练策略:

  1. Adversarial Contrastive Estimation:ELECTRA因为上述一些问题无法使用GAN,但也可以以一种对抗学习的思想来训练。作者将生成器的目标函数由最小化MLM loss换成了最大化判别器在被替换token上的RTD loss。但还有一个问题,就是新的生成器loss无法用梯度上升更新生成器,于是作者用强化学习Policy Gradient的思想,最终优化下来生成器在MLM任务上可以达到54%的准确率,而之前MLE优化下可以达到65%。

  2. Two-stage training:即先训练生成器,然后freeze掉,用生成器的权重初始化判别器,再接着训练相同步数的判别器。

对比三种训练策略,得到下图:

可见“隔离式”的训练策略效果还是最好的,而两段式的训练虽然弱一些,作者猜测是生成器太强了导致判别任务难度增大,但最终效果也比BERT本身要强,进一步证明了判别式预训练的效果。因为如果generator非常强,那么预测出来的token都非常好,即都是original tokens,那么discrinator 并不需要如何学习就收敛,因为它只需要把所有二分类都认为是1就行(假设1代表real)。

joint learning algorithm

我们可以分析,为什么共同训练会使得模型得到好的效果?其实我们形象地理解,就是我们把generator当作是出题人,discriminator当作是答题者。模型在训练过程中,出题人出的题越来越有水平,答题者也随着积累,越来越厉害。而不是刚开始出题人出的题目就非常复杂,答题人根本没办法学习。

我们在bert中,mask是随机的,很容易会出现mask的token是非常简单的,而在electra中,corrupted tokens 是有一定难度的,而不是简单的mask,所以就使得discriminator能更好的学习。

比如说,输入是:一个聪明的模型,如果随机mask之后是:一[MASK]聪明[MASK]模型, 那么就很对模型来说很简单。而 一个[MASK][MASK]的模型,则对于模型来说就更复杂了。根据高质量的mask,那么我们的模型能学得更好discriminator 的二分类模型,将MLM连接在一起,而且它不需要考虑到每个position的数据分布,能够达到更高效训练的成果。

比如小时候学习语文,老师为了加深你对汉语的理解,总是给出一段话,把一些词去掉(当然老师会有目的性的选词,bert是随机的),让你根据上下文来填写空缺词。我们可能会很快的根据上下文或者常识填好空缺词。(MLM)

这时,语文老师加大了难度,会给你一段话,让你挑出这段话中哪里用词不当。这就是electra 判别器的预训练任务。(RTP)

Small model? Big model?

这两节真是吊打之前的模型,作者重申了他的主要目的是提升预训练效率,于是做了GPU单卡就可以愉快训练的ELECTRA-Small和BERT-Small,接着和尺寸不变的ELMo、GPT等进行对比,结果如下:

数据简直优秀,仅用14M参数量,以前13%的体积,在提升了训练速度的同时还提升了效果。

小ELECTRA的本事我们见过了,那大ELECTRA行吗?直接上图:

上面是各个模型在GLUE dev/text上的表现,可以看到ELECTRA仅用了1/4的计算量就达到了RoBERTa的效果。而且作者使用的是XLNet的语料,大约是126G,但RoBERTa用了160G。由于时间和精力问题,作者们没有把ELECTRA训练更久(应该会有提升),也没有使用各种榜单Trick,所以真正的GLUE test上表现一般(现在的T5是89.7,RoBERTa是88.5,没看到ELECTRA)。

Efficiency Analysis

前文中提到了,BERT的loss只计算被替换的15%个token,而ELECTRA是全部都计算的,所以作者又做了几个实验,探究哪种方式更好一些:

  1. ELECTRA 15%:让判别器只计算15% token上的损失

  2. Replace MLM:训练BERT MLM,输入不用[MASK]进行替换,而是其他生成器。这样可以消除这种pretrain-finetune直接的diff。

  3. All-Tokens MLM:接着用Replace MLM,只不过BERT的目标函数变为预测所有的token,而不是只预测15%的token,比较接近ELECTRA。

三种实验结果如下:

可以看到:

  1. 对比ELECTRA和ELECTRA 15%:在所有token上计算loss确实能提升效果

  2. 对比Replace MLM和BERT:[MASK]标志确实会对BERT产生影响,而且BERT目前还有一个trick,就是被替换的10%情况下使用原token或其他token,如果没有这个trick估计效果会差一些。

  3. 对比All-Tokens MLM和BERT:如果BERT预测所有token 的话,效果会接近ELECTRA

  4. all-token MLM比ELECTRA效果差,说明了ELECTRA的 replace token detection比MLM更高效。

另外,作者还发现,ELECTRA体积越小,相比于BERT就提升的越明显,说明fully trained的ELECTRA效果会更好。另外作者推断,由于ELECTRA是判别式任务,不用对整个数据分布建模,所以更parameter-efficient。

总结

无意中发现了这篇还在ICLR盲审的ELECTRA,读完摘要就觉得发现了新大陆,主要是自己也试过Replaced Token Detection这个任务,因为平时任务效果的分析和不久前看的一篇文章,让我深刻感受到了BERT虽然对上下文有很强的编码能力,却缺乏细粒度语义的表示,我用一张图表示大家就明白了:

这是把token编码降维后的效果,可以看到sky和sea明明是天与海的区别,却因为上下文一样而得到了极为相似的编码。细粒度表示能力的缺失会对真实任务造成很大影响,如果被针对性攻击的话更是无力,所以当时就想办法加上更细粒度的任务让BERT去区分每个token,不过同句内随机替换的效果并不好,弱鸡的我也没有再往前想一步,不然就也ICLR了。相信这个任务很多人都想到过,不过都没有探索这么深入,这也告诫我们,idea遍地都是,往下挖才能有SOTA。

ELECTRA是BERT推出这一年来我见过最赞的idea,它不仅提出了能打败MLM的预训练任务,更推出了一种十分适用于NLP的类GAN框架。毕竟GAN太牛逼了,看到deepfake的时候我就想,什么时候我们也能deepcheat,但听说GAN在NLP上的效果一直不太好(只懂皮毛,要学起来了,轻拍),这次ELECTRA虽然只用了判别器,但个人认为也在一定程度上打开了潘多拉魔盒。

参考资料

BERT 在language model中取得了很多非常好的成就,具体参考 ,但是

BERT讲解
GAN 参考资料
ELECTRA: 超越BERT, 19年最佳NLP预训练模型
ELECTRA 详解
img
img
image-20211006223505343
image-20211006224617456
image-20211006224629989
img
img
img
img
img
img
img