📓
Study
  • README
  • Application
    • Contest
      • 竞赛trick
  • Basic Know
    • 半监督学习
    • 贝叶斯
      • 朴素贝叶斯分类器
    • 对抗训练
    • 概率图模型
      • CRF
      • HMM
      • 概率图模型
    • 关联分析
    • 归纳偏置
      • [什么是 Inductive bias(归纳偏置)?](BasicKnow/归纳偏置/什么是 Inductive bias(归纳偏置)?.md)
    • 聚类
    • 决策树
    • 绿色深度学习
    • 树模型&集成学习
      • 提升树
      • Ada Boost
      • [集成学习]
    • 特征工程
      • 数据分桶
      • 特征工程概述
      • 特征选择
      • LDA
      • PCA
    • 线性模型
      • 感知机
      • 最大熵模型
      • SVM
        • SVM支持向量机
      • 逻辑回归
      • 线性回归
    • 优化算法
      • 拉格朗日对偶性
      • 牛顿法
        • 牛顿法&拟牛顿法
      • 梯度下降法
        • 梯度下降算法
      • 优化算法
    • 预处理
      • [1-1]正则表达式
      • [1-2]文本预处理
      • [1-3]词性
      • [1-4]语法分析
      • [1-6]文本分类
      • [1-7]网络爬取
      • 【备用】正则表达式
      • 7.re模块
      • 词典匹配
      • 分词
      • 子表达式
      • Todo
    • 主题模型
      • LDA
    • Deep Learning
      • 反向传播
      • 梯度消失&梯度爆炸
      • Batch Size
      • 1.DLbasis
      • 小概念
      • MLstrategy
      • CNN
      • RNN及其应用
      • 关于深度学习实践
      • 神经网络概述
      • Batch Normalization
      • Program CNN
      • Program D Lbasis
      • Program DN Nimprove
      • Program Neural Style Transfer
      • Summer DL
    • EM算法
    • GAN
      • Gans In Action Master
    • GNN
      • 搜广推之GNN
      • Representation Learning
        • Anomalydetection
        • Conclusion
        • Others
        • Papernotes
        • Recommadation
    • k近邻法
      • K近邻
    • Language Model
      • 语言模型解码采样策略
      • [1-1][语言模型]从N-gram模型讲起
      • [1-2][语言模型]NNLM(神经网络语言模型)
      • [1-3][语言模型]基于RNN的语言模型
      • [1-4][语言模型]用N-gram来做完形填空
      • [1-5][语言模型]用KenLM来做完形填空
    • Loss Function
      • 常用损失函数
      • Focal Loss
      • softmax+交叉熵
    • Machine Learning
      • [基础]概念
      • 待整合
      • 交叉验证
      • 无监督学习
      • 优缺点
      • ML Yearning
      • SVD
    • Statistics Math
      • 程序员的数学基础课
      • 数学基础
      • 统计&高数
      • 统计题目
      • 线性代数
      • 组合数学
      • Discrete Choice Model
      • Nested Choice Model
  • Course Note
    • 基于TensorFlow的机器学习速成课程
      • [Key ML Terminology](CourseNote/基于TensorFlow的机器学习速成课程/Key ML Terminology.md)
    • 集训营
      • 任务说明
      • 算法实践1.1模型构建
      • 算法实践1.2模型构建之集成模型
      • 算法实践2.1数据预处理
    • 李宏毅机器学习
      • 10DNN训练Tips
        • Chapter 18
      • 16无监督学习
        • Chapter 25
    • 贪心NLP
      • 贪心NLP笔记
    • Cs 224 N 2019
      • [A Simple But Tough To Beat Baseline For Sentence Embeddings](CourseNote/cs224n2019/A Simple but Tough-to-beat Baseline for Sentence Embeddings.md)
      • [Lecture 01 Introduction And Word Vectors](CourseNote/cs224n2019/Lecture 01 Introduction and Word Vectors.md)
      • [Lecture 02 Word Vectors 2 And Word Senses](CourseNote/cs224n2019/Lecture 02 Word Vectors 2 and Word Senses.md)
      • [Lecture 03 Word Window Classification Neural Networks And Matrix Calculus](CourseNote/cs224n2019/Lecture 03 Word Window Classification, Neural Networks, and Matrix Calculus.md)
      • [Lecture 04 Backpropagation And Computation Graphs](CourseNote/cs224n2019/Lecture 04 Backpropagation and Computation Graphs.md)
      • [Lecture 05 Linguistic Structure Dependency Parsing](CourseNote/cs224n2019/Lecture 05 Linguistic Structure Dependency Parsing.md)
      • [Lecture 06 The Probability Of A Sentence Recurrent Neural Networks And Language Models](CourseNote/cs224n2019/Lecture 06 The probability of a sentence Recurrent Neural Networks and Language Models.md)
      • Stanford NLP
    • Deep Learning Book Goodfellow
      • Books
        • Deep Learning Book Chapter Summaries Master
      • 提纲
      • C 5
      • C 6
      • [Part I Applied Math And Machine Learning Basics](CourseNote/Deep-Learning-Book-Goodfellow/Part I - Applied Math and Machine Learning basics.md)
    • Lihang
    • NLP实战高手课
      • 极客时间_NLP实战高手课
    • 工具&资料
    • 机器学习、深度学习面试知识点汇总
    • 七月kaggle课程
    • 算法工程师
    • 贪心科技机器学习必修知识点特训营
    • 唐宇迪机器学习
    • 语言及工具
    • AI技术内参
    • Suggestions
  • Data Related
    • 数据质量
      • 置信学习
    • 自然语言处理中的数据增广_车万翔
      • 自然语言处理中的数据增广
    • Mixup
    • 数据不均衡问题
    • 数据增强的方法
  • Knowledge Graph
    • Information Extraction
      • 联合抽取
        • PRGC
      • Code
        • BERT微调
      • NER
        • 阅读理解做NER
          • MRC
        • FLAT
        • Global Pointer
        • 命名实体识别NER
    • Keyword Extraction
      • 关键词抽取
    • 小米在知识表示学习的探索与实践
    • KG
  • Multi Task
    • EXT 5
      • Ex T 5
  • NLG
    • Dailogue
      • 比赛
        • 对话评估比赛
          • [simpread-DSTC10 开放领域对话评估比赛冠军方法总结](NLG/Dailogue/比赛/对话评估比赛/simpread-DSTC10 开放领域对话评估比赛冠军方法总结.md)
      • 任务型对话
        • DST
          • DST概述
        • NLG
          • NLG概述
        • NLU
          • NLU概述
        • 任务型对话概述
        • simpread-任务型对话系统预训练最新研究进展
      • 问答型对话
        • 检索式问答
          • 基于预训练模型的检索式对话系统
          • 检索式文本问答
        • 业界分享
          • 低资源场景下的知识图谱表示学习和问答_阿里_李杨
          • QQ浏览器搜索智能问答
        • 问答型对话系统概述
      • 闲聊型对话
        • 闲聊型对话系统概述
      • 业界分享
        • 人工智能与心理咨询
        • 腾讯多轮对话机器人
        • 微软小冰
        • 小布助手闲聊生成式算法
        • 美团智能客服实践_江会星
        • 去哪儿智能客服探索和实践
        • 实时语音对话场景下的算法实践_阿里_陈克寒
        • 智能语音交互中的无效query识别_小米_崔世起
        • UNIT智能对话
      • 主动对话
      • EVA
        • EVA分享
        • EVA模型
      • PLATO
      • RASA
    • Machine Translation
      • 业界分享
        • 爱奇艺台词翻译分享
      • Paper
        • Deep Encoder Shallow Decoder
    • RAGRelated
    • Text 2 SQL
      • M SQL
        • [M SQL 2](NLG/Text2SQL/M-SQL/M-SQL (2).md)
      • [Text2SQL Baseline解析](NLG/Text2SQL/Text2SQL Baseline解析.md)
      • Text 2 SQL
    • Text Summarization
      • [文本摘要][paper]CTRLSUM
      • 文本摘要
  • Pre Training
    • 业界分享
      • 超大语言模型与语言理解_黄民烈
        • 超大语言模型与语言理解
      • 大模型的加速算法_腾讯微信
        • 大模型的加速算法
      • 孟子轻量化预训练模型
      • 悟道文汇文图生成模型
      • 悟道文澜图文多模态大模型
      • 语义驱动可视化内容创造_微软
        • 语义驱动可视化内容创造
    • Base
      • Attention
      • Mask
        • NLP中的Mask
      • Position Encoding
        • 位置编码
    • BERT
      • ALBERT
      • Bert
        • Venv
          • Lib
            • Site Packages
              • idna-3.2.dist-info
                • LICENSE
              • Markdown-3.3.4.dist-info
                • LICENSE
              • Tensorflow
                • Include
                  • External
                    • Libjpeg Turbo
                      • LICENSE
                  • Unsupported
                    • Eigen
                      • CXX 11
                        • Src
                          • Tensor
              • Werkzeug
                • Debug
                  • Shared
                    • ICON LICENSE
        • CONTRIBUTING
        • Multilingual
      • Ro BER Ta
      • BERT
      • BERT面试问答
      • BERT源码解析
      • NSP BERT
    • BERT Flow
    • BERT Zip
      • Distilling The Knowledge In A Neural Network
      • TINYBERT
      • 模型压缩
    • CPM
    • CPT
      • 兼顾理解和生成的中文预训练模型CPT
    • ELECTRA
    • EL Mo
    • ERNIE系列语言模型
    • GPT
    • MBART
    • NEZHA
    • NLG Sum
      • [simpread-预训练时代下的文本生成|模型 & 技巧](Pre-training/NLGSum/simpread-预训练时代下的文本生成|模型 & 技巧.md)
    • Prompt
      • 预训练模型的提示学习方法_刘知远
        • 预训练模型的提示学习方法
    • T 5
      • Unified SKG
      • T 5
    • Transformer
    • Uni LM
    • XL Net
    • 预训练语言模型
    • BERT变种
  • Recsys
    • 多任务Multi-task&推荐
    • 推荐介绍
    • 推荐系统之召回与精排
      • 代码
        • Python
          • Recall
            • Deep Match Master
              • Docs
                • Source
                  • Examples
                  • FAQ
                  • Features
                  • History
                  • Model Methods
                  • Quick Start
    • 业界分享
      • 腾讯基于知识图谱长视频推荐
    • 召回
    • Sparrow Rec Sys
    • 深度学习推荐系统实战
    • 推荐模型
    • Deep FM
  • Search
    • 搜索
    • 业界分享
      • 爱奇艺搜索排序算法实践
      • 语义搜索技术和应用
    • 查询关键字理解
    • 搜索排序
    • BM 25
    • KDD21-淘宝搜索中语义向量检索技术
    • query理解
    • TFIDF
  • Self Supervised Learning
    • Contrastive Learning
      • 业界分享
        • 对比学习在微博内容表示的应用_张俊林
      • Paper
      • R Drop
      • Sim CSE
    • 自监督学习
  • Text Classification
    • [多标签分类(Multi-label Classification)](TextClassification/多标签分类(Multi-label Classification)/多标签分类(Multi-label Classification).md)
    • Fast Text
    • Text CNN
    • 文本分类
  • Text Matching
    • 文本匹配和多轮检索
    • CNN SIM
    • Word Embedding
      • Skip Gram
      • Glove
      • Word 2 Vec
    • 文本匹配概述
  • Tool
    • 埋点
    • 向量检索(Faiss等)
    • Bigdata
      • 大数据基础task1_创建虚拟机+熟悉linux
      • 任务链接
      • Mr
      • Task1参考答案
      • Task2参考答案
      • Task3参考答案
      • Task4参考答案
      • Task5参考答案
    • Docker
    • Elasticsearch
    • Keras
    • Numpy
    • Python
      • 可视化
        • Interactivegraphics
        • Matplotlib
        • Tkinter
        • Turtle
      • 数据类型
        • Datatype
      • python爬虫
        • Python Scraping Master
          • phantomjs-2.1.1-windows
        • Regularexp
        • Scrapying
        • Selenium
      • 代码优化
      • 一行代码
      • 用python进行语言检测
      • Debug
      • Exception
      • [Features Tricks](Tool/python/Features & Tricks.md)
      • Fileprocess
      • Format
      • Functional Programming
      • I Python
      • Magic
      • Math
      • Os
      • Others
      • Pandas
      • Python Datastructure
      • Python操作数据库
      • Streamlit
      • Time
    • Pytorch
      • Dive Into DL Py Torch
        • 02 Softmax And Classification
        • 03 Mlp
        • 04 Underfit Overfit
        • 05 Gradient Vanishing Exploding
        • 06 Text Preprocess
        • 07 Language Model
        • 08 Rnn Basics
        • 09 Machine Translation
        • 10 Attention Seq 2 Seq
        • 11 Transformer
        • 12 Cnn
        • 14 Batchnorm Resnet
        • 15 Convexoptim
        • 16 Gradientdescent
        • 17 Optim Advance
    • Spark
      • Pyspark
        • pyspark之填充缺失的时间数据
      • Spark
    • SQL
      • 数据库
      • Hive Sql
      • MySQL实战45讲
    • Tensor Flow
      • TensorFlow入门
  • Common
  • NLP知识体系
Powered by GitBook
On this page
  • 小布助手简介
  • 生成式模型介绍
  • 生成式decode方案介绍
  • 生成式答案选择方案介绍
  • 生成式聊天评估方案
  • 小布助手业务实践
  • 参考资料

Was this helpful?

  1. NLG
  2. Dailogue
  3. 业界分享

小布助手闲聊生成式算法

Previous微软小冰Next美团智能客服实践_江会星

Last updated 3 years ago

Was this helpful?

小布助手简介

具备智趣单轮、技能引导、话题多轮、情绪感知等基础能力。

  • 智趣单轮:提供很多有意思的单轮语料,包含了很多紧跟时代潮流的热梗;

  • 技能引导:根据用户的query去判断他当时所处场景,智能推荐一些有趣的技能,比如用户说我好无聊,就会问他,要不要我给你讲个笑话,他说好的,然后直接就给他讲笑话;

  • 话题多轮:针对线上比较高频的一些多轮话题而构建,比如说我想蹦迪,然后我们说你准备好了吗?他说好了,此时我们就已经知道他是说他已经准备好去蹦迪,接着我们就会告诉他你是整个舞池最靓的仔;

  • 情绪感知:在与用户交互的整个过程中,持续感知用户的情感状态,通过语料或表情与用户进行一些情感上的共鸣。比如用户说我失恋了,我们就会给他一些安慰的话和表情。

业界生成式方案

生成式模型介绍

① RNN-based seq2seq

② tensor2tensor

③ GPT模型

④ Unilm模型

⑤ 模型对比

生成式decode方案介绍

① search

② sampling

生成式答案选择方案介绍

① RCE rank算法

② MMI rank算法

第二种使用比较多的是MMI rank算法。生成式的任务是通过一个context去生成一个response,每个response有一个生成概率。MMI算法是反向来做,训练的时候用response去生成context,在排序的时候有多个response,context固定之后用多个response去生成context,然后去计算能够生成的概率。最后排序的时候,使用前项跟后项的这两个概率做一个连立,作为最终排序的依据。

通过这种方法,可以有效地降低那些通用无意义的query的得分。

生成式聊天评估方案

目前生成式评估分为两种方案:人工评估和自动化评估。

① 人工评估

迭代效率比较慢,对于模型迭代来说不利,但是它可能跟我们真实的体验效果比较一致。现在业界对于生成式的评估没有一个统一的标准,每个公司会提出一些自己的想法。

比如谷歌提的SSA就是回复的合理性,回复内容是否是万能答案,对两者做平均。facebook也有自己一套方案,都是通过人,一种是让一个人同时跟两个chatbot的去聊,判断哪个更好;第二种是让两个chatbot自己聊,人去判断哪个更好。在中文领域,百度也提了一种评估方案,包含四个方面评估,回答的内容是否跟上下文相关,是否包含一定的信息量,内容的新颖性,还有回复内容跟正常人说话是否相似。

② 自动化评估

在生成式任务里面有各种各样的指标,但是这种自动化指标跟我们真实的用户体验之间是有一定gap的。所以在自动化指标里面评估的效果比较好,在真实体验的时候并不一定就会好。

小布助手业务实践

1. 整体方案与流程

2. 模型设计与优化

① 模型选型

模型选型参考的是百度plato two的模型方案,使用了两阶段式的训练。

  • 第一阶段1V1训练

在训练生成式任务的时候,相同的context会有多个response。因为同样说一句话,别人去答的时候可能有多种多样的回答方法。但是对于模型来说,我们给一个context然后生成多个不一样的response,模型学习起来是困难的。就相当于一个query有多个标签。为了降低学习的复杂度,我们首先1V1训练,对相同context的多个答案进行随机抽取,抽取出一个答案来进行训练,这样的话就降低了整个学习的难度。整个模型的选型用的是Unilm的模型结构,使用bert-base对这个模型来进行初始化,并且引入了一些预训练的知识。

  • 第二阶段1VN训练

使用全量的语料来进行训练。针对前面一对多的情况做了一个处理,首先会把context、response和隐状态同时输入到双向的语言模型里面来,然后利用这个隐状态来做一个分类,相当于去判断response跟context它们到底属于哪个类别的回复。在预测的时候使用不同的latent,根据context去生成,在相同的context的情况下,就可以合理地去生成不同的response。这样做还有一个好处,就是在预测的时候,隐状态是可以人为输入的,不同的输入可以生成更多种答案,可以很好地提高生成的多样性。Latent的状态个数也可以根据我们语料的情况去设置。

② 模型输入

模型输入除了普通的token embedding之外,我们加了一个context mask,主要去提示哪一部分是单向的语言模型,哪一部分是双向的语言模型。还有一个role embedding去提示当前query是哪个人物说的。目前支持两个角色的对话。Context支持的最大长度是128,支持的最大的对话轮数是10轮。

③ 训练配置

上图是我们模型训练的一些配置。

④ decode方案

在decode方面,我们使用的是sampling rank的方法,采样的方法用的是top-p的算法。

beam search中,一个query可以search出多个answer。采样的时候,都是一个query能采样一个结果。为了同时生成多个结果,我们会把相同的query组装成一个batch,同时输入进去做预测。query batch越大,生成的答案可能就越多,多样性就越好。

但是batch大了之后整体性能就会有很大问题,所以我们设置batch size为10,最大生成长度15。

采样的时候,在随机性放的比较大的时候,可能会采到一些不太好的结果,因此我们可以将一些query的随机性设少一点,一些随机性设大一点,这样哪怕采样采到一些不太好的结果,仍有随机性小的那些答案来保底,确保有一个合适的结果,兼顾生成结果的多样性与可靠性。

⑤ 答案选择方案

在答案选择方面,我们使用的是RCE算法,bert-base的模型。第一阶段生成式模型来对模型做初始化,训练时使用MLM任务。正样本基本上都使用的是生成式的训练语料,负样本有的是随机采样,有的是一些规则生成的。

在答案选择方面,除了纯模型的打分,我们还引入了很多别的变量进来。比如本来query生成不同的response,会有一个生成的概率,这也是我们一个参考因素。我们还会做一些规则去做冲突检测,如果当前query跟上文有明确的冲突,我们就把它的分值给降低。我们也会去对判断query是不是有意义的,如果无意义也会把它分值降低。除此之外,我们还会去做对query本身以及跟上下文的重复检测,把这个结果也纳入到我们最终的排序里面来。这就是我们最终的排序的结果分数的计算方法。

⑥ query安全检测

我们在安全方面也做了很多的工作。一个query要进入到生成式模型,会经过三个漏斗的步骤,第一步会做一个系统级的安全检测,然后闲聊业务会对query再做一个安全检测,包括一些关键词、长度或者一些特殊字符等等。最后还设置了一个安全模型,来提高敏感query的召回率。

我们做了一个线上的统计,线上query从源头到能够过生成式模型,通过率大概是85%。

query的安全检测模型,最开始是用我们的线上的日志去训练了一个bert-base的模型。为了提升效率,我们又用bert-base去蒸馏了一个四层的bert,在线上用T4卡一次预测大概是三毫秒。使用query检测模型,相对于从策略去检测的话,识别准确率提升了7%,召回率也有12%的明显提升。

⑦ query-answer安全检测

有的query本身是不敏感的,但query和answer组合起来不太好。针对这种情况,我们基于bert-base来建模。这个模型相对于前面纯query检测来说难度更大一些,为了保证效果,这里我们就用了一个bert-base的模型,没有再去做蒸馏。

通过使用这种QA检测模型,线上敏感query下降了7.8%。

3. 应答安全方案

除了以上策略和模型方面的工作,我们在安全方面还对训练数据做了一些处理。首先我们对原始的训练数据进行安全识别,对于不合理的数据,我们考虑两种策略,一种是直接移除,另外一种是通过一些万能回复或者引导回复来进行替换,最终让模型看到的数据都是安全的干净的数据,这样就可以在很大程度上避免模型去生成一些不太合适的query。

4. 性能分析与优化

① 性能优化

基于预训练的生成式任务,还有一个很大的挑战,就是性能问题。生成式任务是一个自回归任务,需要一个字一个字地去生成,所以它调用模型的次数是非常大的。针对性能优化,我们也做了一些工作:

  • 动态batch:前面讲过为了去使用sample rank的方法,我们会做一个batch去输入,在一个batch去预测的时候,我们发现有的已经生成完了,再让它继续输入进去做预测,其实已经没有意义了。所以我们动态地把这些已经生成完了的去掉,在预测的过程中batch size不断地减少,这样就能达到性能优化的结果。

  • 用onnx runtime的方式来进行模型的预测:首先我们从一个check point固化到Pb,然后转到onnx,用onnx去做加速。使用onnx进行加速后,单次预测耗时下降了20%。我们还尝试使用FP16去进行加速,但是生成的结果不太符合预期。

② 性能分析

生成式为了去提高预测的性能,往往都会去做一个cache机制。在做某一次预测的时候,预测完了之后我们会把这一次预测的一些中间结果保存起来,而在下一次预测的时候,只需要把上一次预测出来的结果当成输入去获得它的一个embedding,然后通过这个embedding和上一步存的中间结果进行交互的计算,直接来计算下一个预测的概率,就可以避免很多重复计算。当然,在第一次预测时没有cache,这样预测耗时相对会长一些,后面基本上就比较稳定了。

我们用我们的模型在T4卡上也做了一些测试。batch_size=10,seq_len=10的时候,第一次预测大概是15毫秒,后面每一次预测大概是9毫秒。整个生成式模型全链路算下来,也就是query安全检测 + 第1次预测 + 第N次预测 * (max_len - 1) + QA安全检测,计算下来大概是152毫秒左右。

5. 效果分析与展示

① 效果评估

我们对训练的模型做了效果评估,包括两个方面:

  • 自动化评估:使用selfchat的方式来进行评估,就是让两个自己去聊,然后我们去采他们的对话数据来进行评估。评估的自动化指标是多样性。上图(左)可以看到我们和业界其他一些方案的对比。

  • 人工评估:让三方评测团队对我们进行盲评,使用了5000多条线上的query。评估的标准主要包含安全性、相关性、丰富性和通顺性。打分的话,不合适是0分,还可以是0.5分,达到预期的是1分。小布助手得分为0的情况远远少于标杆产品,得分0.5和1的远超标杆产品,最后综合满意度接近85%。

② 效果展示

接下来展示一下我们生成式的效果。

从上图可以看出,内容生成的相关性是非常好的。结合我们线上的业务,我们也做了一些专门的优化,有时候线上的业务可能会存在有一些模糊意图,像是帮我打,我们针对这种模糊意图构建了很多的引导澄清的answer,然后通过使用模型来进行优化。

上图是多轮的效果展示,整个聊天体验还是非常顺畅的。

参考资料

小布助手闲聊生成式算法