Features
Feature Columns
SparseFeat
SparseFeat
is a namedtuple with signature SparseFeat(name, vocabulary_size, embedding_dim, use_hash, dtype,embedding_name, group_name)
name : feature name
vocabulary_size : number of unique feature values for sprase feature or hashing space when
use_hash=True
embedding_dim : embedding dimension
use_hash : defualt
False
.IfTrue
the input will be hashed to space of sizevocabulary_size
.dtype : default
float32
.dtype of input tensor.embedding_name : default
None
. If None, the embedding_name will be same asname
.group_name : feature group of this feature.
DenseFeat
DenseFeat
is a namedtuple with signature DenseFeat(name, dimension, dtype)
name : feature name
dimension : dimension of dense feature vector.
dtype : default
float32
.dtype of input tensor.
VarLenSparseFeat
VarLenSparseFeat
is a namedtuple with signature VarLenSparseFeat(sparsefeat, maxlen, combiner, length_name, weight_name,weight_norm)
sparsefeat : a instance of
SparseFeat
maxlen : maximum length of this feature for all samples
combiner : pooling method,can be
sum
,mean
ormax
length_name : feature length name,if
None
, value 0 in feature is for padding.weight_name : default
None
. If not None, the sequence feature will be multiplyed by the feature whose name isweight_name
.weight_norm : default
True
. Whether normalize the weight score or not.
Models
FM (Convolutional Click Prediction Model)
DSSM (Deep Structured Semantic Model)
YoutubeDNN
NCF (Neural Collaborative Filtering)
MIND (Multi-Interest Network with Dynamic routing)
Last updated
Was this helpful?