📓
Study
  • README
  • Application
    • Contest
      • 竞赛trick
  • Basic Know
    • 半监督学习
    • 贝叶斯
      • 朴素贝叶斯分类器
    • 对抗训练
    • 概率图模型
      • CRF
      • HMM
      • 概率图模型
    • 关联分析
    • 归纳偏置
      • [什么是 Inductive bias(归纳偏置)?](BasicKnow/归纳偏置/什么是 Inductive bias(归纳偏置)?.md)
    • 聚类
    • 决策树
    • 绿色深度学习
    • 树模型&集成学习
      • 提升树
      • Ada Boost
      • [集成学习]
    • 特征工程
      • 数据分桶
      • 特征工程概述
      • 特征选择
      • LDA
      • PCA
    • 线性模型
      • 感知机
      • 最大熵模型
      • SVM
        • SVM支持向量机
      • 逻辑回归
      • 线性回归
    • 优化算法
      • 拉格朗日对偶性
      • 牛顿法
        • 牛顿法&拟牛顿法
      • 梯度下降法
        • 梯度下降算法
      • 优化算法
    • 预处理
      • [1-1]正则表达式
      • [1-2]文本预处理
      • [1-3]词性
      • [1-4]语法分析
      • [1-6]文本分类
      • [1-7]网络爬取
      • 【备用】正则表达式
      • 7.re模块
      • 词典匹配
      • 分词
      • 子表达式
      • Todo
    • 主题模型
      • LDA
    • Deep Learning
      • 反向传播
      • 梯度消失&梯度爆炸
      • Batch Size
      • 1.DLbasis
      • 小概念
      • MLstrategy
      • CNN
      • RNN及其应用
      • 关于深度学习实践
      • 神经网络概述
      • Batch Normalization
      • Program CNN
      • Program D Lbasis
      • Program DN Nimprove
      • Program Neural Style Transfer
      • Summer DL
    • EM算法
    • GAN
      • Gans In Action Master
    • GNN
      • 搜广推之GNN
      • Representation Learning
        • Anomalydetection
        • Conclusion
        • Others
        • Papernotes
        • Recommadation
    • k近邻法
      • K近邻
    • Language Model
      • 语言模型解码采样策略
      • [1-1][语言模型]从N-gram模型讲起
      • [1-2][语言模型]NNLM(神经网络语言模型)
      • [1-3][语言模型]基于RNN的语言模型
      • [1-4][语言模型]用N-gram来做完形填空
      • [1-5][语言模型]用KenLM来做完形填空
    • Loss Function
      • 常用损失函数
      • Focal Loss
      • softmax+交叉熵
    • Machine Learning
      • [基础]概念
      • 待整合
      • 交叉验证
      • 无监督学习
      • 优缺点
      • ML Yearning
      • SVD
    • Statistics Math
      • 程序员的数学基础课
      • 数学基础
      • 统计&高数
      • 统计题目
      • 线性代数
      • 组合数学
      • Discrete Choice Model
      • Nested Choice Model
  • Course Note
    • 基于TensorFlow的机器学习速成课程
      • [Key ML Terminology](CourseNote/基于TensorFlow的机器学习速成课程/Key ML Terminology.md)
    • 集训营
      • 任务说明
      • 算法实践1.1模型构建
      • 算法实践1.2模型构建之集成模型
      • 算法实践2.1数据预处理
    • 李宏毅机器学习
      • 10DNN训练Tips
        • Chapter 18
      • 16无监督学习
        • Chapter 25
    • 贪心NLP
      • 贪心NLP笔记
    • Cs 224 N 2019
      • [A Simple But Tough To Beat Baseline For Sentence Embeddings](CourseNote/cs224n2019/A Simple but Tough-to-beat Baseline for Sentence Embeddings.md)
      • [Lecture 01 Introduction And Word Vectors](CourseNote/cs224n2019/Lecture 01 Introduction and Word Vectors.md)
      • [Lecture 02 Word Vectors 2 And Word Senses](CourseNote/cs224n2019/Lecture 02 Word Vectors 2 and Word Senses.md)
      • [Lecture 03 Word Window Classification Neural Networks And Matrix Calculus](CourseNote/cs224n2019/Lecture 03 Word Window Classification, Neural Networks, and Matrix Calculus.md)
      • [Lecture 04 Backpropagation And Computation Graphs](CourseNote/cs224n2019/Lecture 04 Backpropagation and Computation Graphs.md)
      • [Lecture 05 Linguistic Structure Dependency Parsing](CourseNote/cs224n2019/Lecture 05 Linguistic Structure Dependency Parsing.md)
      • [Lecture 06 The Probability Of A Sentence Recurrent Neural Networks And Language Models](CourseNote/cs224n2019/Lecture 06 The probability of a sentence Recurrent Neural Networks and Language Models.md)
      • Stanford NLP
    • Deep Learning Book Goodfellow
      • Books
        • Deep Learning Book Chapter Summaries Master
      • 提纲
      • C 5
      • C 6
      • [Part I Applied Math And Machine Learning Basics](CourseNote/Deep-Learning-Book-Goodfellow/Part I - Applied Math and Machine Learning basics.md)
    • Lihang
    • NLP实战高手课
      • 极客时间_NLP实战高手课
    • 工具&资料
    • 机器学习、深度学习面试知识点汇总
    • 七月kaggle课程
    • 算法工程师
    • 贪心科技机器学习必修知识点特训营
    • 唐宇迪机器学习
    • 语言及工具
    • AI技术内参
    • Suggestions
  • Data Related
    • 数据质量
      • 置信学习
    • 自然语言处理中的数据增广_车万翔
      • 自然语言处理中的数据增广
    • Mixup
    • 数据不均衡问题
    • 数据增强的方法
  • Knowledge Graph
    • Information Extraction
      • 联合抽取
        • PRGC
      • Code
        • BERT微调
      • NER
        • 阅读理解做NER
          • MRC
        • FLAT
        • Global Pointer
        • 命名实体识别NER
    • Keyword Extraction
      • 关键词抽取
    • 小米在知识表示学习的探索与实践
    • KG
  • Multi Task
    • EXT 5
      • Ex T 5
  • NLG
    • Dailogue
      • 比赛
        • 对话评估比赛
          • [simpread-DSTC10 开放领域对话评估比赛冠军方法总结](NLG/Dailogue/比赛/对话评估比赛/simpread-DSTC10 开放领域对话评估比赛冠军方法总结.md)
      • 任务型对话
        • DST
          • DST概述
        • NLG
          • NLG概述
        • NLU
          • NLU概述
        • 任务型对话概述
        • simpread-任务型对话系统预训练最新研究进展
      • 问答型对话
        • 检索式问答
          • 基于预训练模型的检索式对话系统
          • 检索式文本问答
        • 业界分享
          • 低资源场景下的知识图谱表示学习和问答_阿里_李杨
          • QQ浏览器搜索智能问答
        • 问答型对话系统概述
      • 闲聊型对话
        • 闲聊型对话系统概述
      • 业界分享
        • 人工智能与心理咨询
        • 腾讯多轮对话机器人
        • 微软小冰
        • 小布助手闲聊生成式算法
        • 美团智能客服实践_江会星
        • 去哪儿智能客服探索和实践
        • 实时语音对话场景下的算法实践_阿里_陈克寒
        • 智能语音交互中的无效query识别_小米_崔世起
        • UNIT智能对话
      • 主动对话
      • EVA
        • EVA分享
        • EVA模型
      • PLATO
      • RASA
    • Machine Translation
      • 业界分享
        • 爱奇艺台词翻译分享
      • Paper
        • Deep Encoder Shallow Decoder
    • RAGRelated
    • Text 2 SQL
      • M SQL
        • [M SQL 2](NLG/Text2SQL/M-SQL/M-SQL (2).md)
      • [Text2SQL Baseline解析](NLG/Text2SQL/Text2SQL Baseline解析.md)
      • Text 2 SQL
    • Text Summarization
      • [文本摘要][paper]CTRLSUM
      • 文本摘要
  • Pre Training
    • 业界分享
      • 超大语言模型与语言理解_黄民烈
        • 超大语言模型与语言理解
      • 大模型的加速算法_腾讯微信
        • 大模型的加速算法
      • 孟子轻量化预训练模型
      • 悟道文汇文图生成模型
      • 悟道文澜图文多模态大模型
      • 语义驱动可视化内容创造_微软
        • 语义驱动可视化内容创造
    • Base
      • Attention
      • Mask
        • NLP中的Mask
      • Position Encoding
        • 位置编码
    • BERT
      • ALBERT
      • Bert
        • Venv
          • Lib
            • Site Packages
              • idna-3.2.dist-info
                • LICENSE
              • Markdown-3.3.4.dist-info
                • LICENSE
              • Tensorflow
                • Include
                  • External
                    • Libjpeg Turbo
                      • LICENSE
                  • Unsupported
                    • Eigen
                      • CXX 11
                        • Src
                          • Tensor
              • Werkzeug
                • Debug
                  • Shared
                    • ICON LICENSE
        • CONTRIBUTING
        • Multilingual
      • Ro BER Ta
      • BERT
      • BERT面试问答
      • BERT源码解析
      • NSP BERT
    • BERT Flow
    • BERT Zip
      • Distilling The Knowledge In A Neural Network
      • TINYBERT
      • 模型压缩
    • CPM
    • CPT
      • 兼顾理解和生成的中文预训练模型CPT
    • ELECTRA
    • EL Mo
    • ERNIE系列语言模型
    • GPT
    • MBART
    • NEZHA
    • NLG Sum
      • [simpread-预训练时代下的文本生成|模型 & 技巧](Pre-training/NLGSum/simpread-预训练时代下的文本生成|模型 & 技巧.md)
    • Prompt
      • 预训练模型的提示学习方法_刘知远
        • 预训练模型的提示学习方法
    • T 5
      • Unified SKG
      • T 5
    • Transformer
    • Uni LM
    • XL Net
    • 预训练语言模型
    • BERT变种
  • Recsys
    • 多任务Multi-task&推荐
    • 推荐介绍
    • 推荐系统之召回与精排
      • 代码
        • Python
          • Recall
            • Deep Match Master
              • Docs
                • Source
                  • Examples
                  • FAQ
                  • Features
                  • History
                  • Model Methods
                  • Quick Start
    • 业界分享
      • 腾讯基于知识图谱长视频推荐
    • 召回
    • Sparrow Rec Sys
    • 深度学习推荐系统实战
    • 推荐模型
    • Deep FM
  • Search
    • 搜索
    • 业界分享
      • 爱奇艺搜索排序算法实践
      • 语义搜索技术和应用
    • 查询关键字理解
    • 搜索排序
    • BM 25
    • KDD21-淘宝搜索中语义向量检索技术
    • query理解
    • TFIDF
  • Self Supervised Learning
    • Contrastive Learning
      • 业界分享
        • 对比学习在微博内容表示的应用_张俊林
      • Paper
      • R Drop
      • Sim CSE
    • 自监督学习
  • Text Classification
    • [多标签分类(Multi-label Classification)](TextClassification/多标签分类(Multi-label Classification)/多标签分类(Multi-label Classification).md)
    • Fast Text
    • Text CNN
    • 文本分类
  • Text Matching
    • 文本匹配和多轮检索
    • CNN SIM
    • Word Embedding
      • Skip Gram
      • Glove
      • Word 2 Vec
    • 文本匹配概述
  • Tool
    • 埋点
    • 向量检索(Faiss等)
    • Bigdata
      • 大数据基础task1_创建虚拟机+熟悉linux
      • 任务链接
      • Mr
      • Task1参考答案
      • Task2参考答案
      • Task3参考答案
      • Task4参考答案
      • Task5参考答案
    • Docker
    • Elasticsearch
    • Keras
    • Numpy
    • Python
      • 可视化
        • Interactivegraphics
        • Matplotlib
        • Tkinter
        • Turtle
      • 数据类型
        • Datatype
      • python爬虫
        • Python Scraping Master
          • phantomjs-2.1.1-windows
        • Regularexp
        • Scrapying
        • Selenium
      • 代码优化
      • 一行代码
      • 用python进行语言检测
      • Debug
      • Exception
      • [Features Tricks](Tool/python/Features & Tricks.md)
      • Fileprocess
      • Format
      • Functional Programming
      • I Python
      • Magic
      • Math
      • Os
      • Others
      • Pandas
      • Python Datastructure
      • Python操作数据库
      • Streamlit
      • Time
    • Pytorch
      • Dive Into DL Py Torch
        • 02 Softmax And Classification
        • 03 Mlp
        • 04 Underfit Overfit
        • 05 Gradient Vanishing Exploding
        • 06 Text Preprocess
        • 07 Language Model
        • 08 Rnn Basics
        • 09 Machine Translation
        • 10 Attention Seq 2 Seq
        • 11 Transformer
        • 12 Cnn
        • 14 Batchnorm Resnet
        • 15 Convexoptim
        • 16 Gradientdescent
        • 17 Optim Advance
    • Spark
      • Pyspark
        • pyspark之填充缺失的时间数据
      • Spark
    • SQL
      • 数据库
      • Hive Sql
      • MySQL实战45讲
    • Tensor Flow
      • TensorFlow入门
  • Common
  • NLP知识体系
Powered by GitBook
On this page
  • 数据科学家高阶能力之分析产品
  • 数据科学家高阶能力之评估产品
  • 精读2017年KDD最佳研究论文
  • 精读2017年KDD最佳应用数据科学论文

Was this helpful?

  1. Course Note

AI技术内参

数据科学家高阶能力之分析产品

一个数据驱动的产品往往是一个复杂的复合体。如何在一个综合复杂的体系中找到人工智能技术的合适位置,以及技术究竟要扮演什么样的角色,其实是一个数据驱动型产品能否成功的核心问题。

人工智能技术到底能够给产品带来什么?

人工智能技术给产品带来的其实不仅是一些核心的模型和算法,更重要的是,带给产品一项根本性的能力:数据驱动的决策过程。

人工智能技术的特点有两个方面:第一,数据驱动。第二,在不确定的因素下智能决策。

数据驱动

数据(数据收集的机制,建立数据管道,建立数据的检测系统)

驱动(驱动产品的发展,驱动产品方方面面的进化,这个步骤是针对产品的所有参与人员的。加深对产品的认识,提出更好的想法。)

数据驱动的第一部分是有关“硬件”的,是数据链条的技术以及实现。第二部分是有关“软件”的,是项目人员的意识和责任。

智能决策

非智能决策主要是指,不依靠数据,或者依靠很少量的数据,由产品经理或产品负责人人工地进行决策。

非智能决策的一大特点是决策的主观性。另一个特点是不可复制性。决策的方法和方式都不能动态地随着时间、数据的变化而变化。

智能决策就是产品的决策者依据产品的特点,把一些复杂的、需要依靠大量数据、选择面太广的决策交给人工智能模型和算法,并且建立起一整套体系,利用人工智能手段依靠数据来对整个产品进行快速迭代。

智能决策不仅仅是某一项任务的智能化,更重要的是一种理念的提升。一旦产品的决策中出现了有需要大量数据、有复杂选项的时候,作为产品的决策者就需要马上意识到,这部分决策任务应该逐渐从人转移到智能模型和算法上,依靠数据驱动流程来加快迭代。这一点是智能决策的关键。

小结

作为人工智能工程师或者数据科学家的一个高阶技能,就是能够培养这样一种理念,对产品进行持续分析,检测产品是否遵循了数据驱动的理念,挖掘产品有哪些需求可以进行智能决策。

第一,产品分析的能力其实就是对产品需求的一个分解,而分解之后的产品迭代很大程度上依赖于数据驱动和智能决策。第二,什么是数据驱动,什么是智能决策,究竟怎样可以为产品带来这两项核心能力。

思考:什么样的产品不太适合数据驱动和智能决策呢?

数据科学家高阶能力之评估产品

有一个成熟的产品评价体系可以成为产品不断迭代的领航标。

我们需要建立层次化的评估体系,需要一个衡量产品好坏的框架。这个框架要从宏观到微观,能够对你的产品进行全方位的检测,并且这种检测能够帮助你更容易地进行决策。

产品的经济收益

1.如何衡量你的经济收益?如年收入、年增长率、季度增长率等

  • 如何衡量你收入的现状

  • 如何衡量你收入的增长

2.能否用经济收益来直接指导你的产品构建?

用经济指标来指导产品的发展是困难的,因为衡量经济收入的指标往往太过宏观,而且衡量起来有难度,指标的衡量需要至少等待一个季度以上。

很多产品并不直接产生经济结果,经济收益是一个“副产品”。

层次化的评估体系

最低层次的评估主要围绕着产品的最小组成单元。比如社交网络的各个页面上的模块就可以是最小的被评估的单元。

每一个模块往往是产品的一个逻辑单元,一个最小的承载产品理念的单元。不管是工程团队还是产品团队的运作,基本上都是为这些模块而工作。因此,观察最小单元的效果对产品和工程团队都有直接的指导意义。如果团队目前对这个模块做了一些更改,那么最直接的效果就是这个模块的一些指标会发生变化。

在这个层次,衡量模块的指标主要是模块的直接效果指标。比如模块本身的点击率,模块本身的驻留时间,模块上一些其他的用户活跃指标等。

第二个层次的指标是从单个模块上升到一个页面。这个时候,不仅需要理解单个模块的情况,还需要对整个页面上所有模块产生的功能群进行深入研究。

比如不少现代搜索引擎的搜索页面往往都有广告模块。长期的经验告诉我们,广告模块的效果和普通搜索模块的效果往往有相反关系的耦合。因此,广告效果的提升,可能并不意味着是件好事情。

这个层次的指标依然是可以直接测量的,但是分析时需要对页面上所有模块有全面了解。

前两个层次的指标主要是测量用户在某一个模块或者页面上的表现,核心是看产品的更改对用户的直接影响。

第三个层次的指标,就从某一个模块、某一个页面上升到了用户这个层级,主要是检测用户在一个会话(session)中的表现。

这个时候,用户往往在一个会话中,和多个模块、多个页面进行非常复杂的互动。在这个层次上,我们已经很难仅凭观测就能琢磨出用户在这个会话是否真正感觉满意。这个时候,我们往往就需要建立用户模型(User Model),以及通过一些统计的方法建模,从而实现真正理解用户行为的目的。

比如,如果我们构建一个电子商务网站,在一个用户会话中检测用户是否购买了一些商品,这些商品的总价值又是多少。这个监测指标有时候被称作GMV(Gross Mercandise Value),也就是通常所说的网站成交金额。

如何测量和建模不同页面、模块对用户购买行为的影响,就是第三层次指标的核心挑战。

第四个层次的指标是从一个用户会话上升到多个用户会话。这个时候,我们关心的是用户较长时间的体验问题。对于一些复杂的任务,用户需要多个会话才能完成。这种情况下,检测指标的复杂性又进一步提高。比如用户先在网站上搜索关于婚纱的信息,之后又从其他途径了解了更多信息,重新回到网站开始新的会话,在这个会话中,重点比较了好几个婚纱,然后决定购买哪一件。

第三和第四层次的指标有两个特点。第一,相对于第一、第二层次的指标而言,这些指标已经不那么“敏感”了,也就是说,仅改变某一个模块甚至某一个页面,是很难在短时间内改变第三,特别是第四层次的指标的。第二个特点是,第三和第四层次的指标依然可以用传统的A/B测试来进行观测,只不过需要很仔细地设计实验。

第五个层次的指标就是用户和产品的长期指标。比如一些经济指标,类似的还包括月活跃用户、年度活跃用户等等。这些指标有两个特点。第一,这些指标往往是产品的终极目标,一般及其难以撼动,特别是对于成熟的产品而言。第二个特点是,这些指标往往无法通过A/B测试进行衡量。

思考题:如果第五个层次无法直接通过A/B测试进行观测,那我们如何在平时进行A/B测试的时候,就能确保是在优化第五个层次的指标,也就是我们产品的终极目标呢?

精读2017年KDD最佳研究论文

《通过挖掘类比关系加速创新》(Accelerating Innovation Through Analogy Mining)

这篇文章主要阐述了帮助创新的一个重要步骤,那就是如何找到合适并且有效的类比案例。

如何找到合适的类比,并能从中获取灵感,可能就是创新的一个关键因素。

这篇文章提出了一种自动的在海量无结构的文本数据中挖掘类比场景的方法。文章关注的是产品信息数据。

作者们提出了一组叫“目的”和“机制”的概念。当前的产品要解决什么问题?当前的产品是使用什么手段或者方法来解决这个问题的?作者们认为,这种对产品信息的分类符合很多工程设计的过程,是创新过程中的一个必要环节。

作者们提出一种依靠标签数据的监督学习机制。由亚马逊土耳其机器人上的在线工人来标注每个文本信息是目的信息还是机制信息。

首先,我们有一组文本,每组文本都有这些文本的原始文字。针对每个文档,我们都收集K个目的标注和K个机制标注。这时,我们定义一组“目的标注”向量,当文本原始文字中的某个字被标识为目的的时候,这个向量的相应元素置1,反之置0.类似的定义“机制标注”向量。因为我们有K个标注,因此我们也有相应的K个“目的标注”和“机制标注”向量。这两组向量可以说是原始标签信息的一种向量的表达。

下一步就是从每一个有标签信息的文档里产生唯一的目的向量和机制向量。这篇文章采用的方法是,利用每个单词的嵌入向量来获得这个唯一的向量。

具体方法是,首先,针对每一个标注(总共有K个),我们收集属于这个标注的单词的嵌入向量,并把这些嵌入向量都拼接起来。然后计算这组拼接好的向量所对应单词的TF-IDF值,并且取TF-IDF值最高的一些单词相对应的嵌入向量,加权平均以后,就得到了相应的唯一的目的向量或者是机制向量。这个步骤是依赖于文档标签的,我们只能对训练数据进行这样的构造。

如何基于这样的数据以及向量,来对未知的文档进行提取目的向量和机制向量呢?文章采用了深度模型RNN,具体来说是双向的RNN并且有一个GRU。

总体的思路是,根据文档的嵌入向量信息,我们希望得到一组文档的隐含表达(中间参数),然后可以从这个隐含表达来预测目的向量和机制向量。注意,因为需要预测两组目标,目的向量和机制向量,因此,这里至少需要分别有两组参数。

除了预测文档的目的向量和机制向量以外,作者们还提出了一个用少数关键词来解释这两组变量的机制。具体来说,就是设立一个新的学习目标函数,希望通过少数关键词所对应的嵌入向量来重构目的向量或者机制向量,让得到的误差最小。

思考:这篇文章提出的是使用标注信息来获取目的向量和机制向量,我们有没有办法能够不使用标注信息,采用完全无监督的方式呢?

精读2017年KDD最佳应用数据科学论文

Previous语言及工具NextSuggestions

Last updated 3 years ago

Was this helpful?