任务:数据预处理
对数据进行探索和分析:
1.查看数据
首先读入数据,查看数据的维度,并且输出5行感受一下~
import pandas as pd
data = pd.read_csv('./data_all.csv', engine='python')
print(data.shape)
data.head()
输出:
take_amount_in_later_12_month_highest
trans_amount_increase_rate_lately
trans_days_interval_filter
latest_query_time_weekday
loans_latest_time_weekday
5 rows × 85 columns
可见一共是4754行,85列。所有的列似乎都是数值型的,为了更确定,我们用info()函数看看数据类型:
输出:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4754 entries, 0 to 4753
Data columns (total 85 columns):
low_volume_percent 4754 non-null float64
middle_volume_percent 4754 non-null float64
take_amount_in_later_12_month_highest 4754 non-null int64
trans_amount_increase_rate_lately 4754 non-null float64
trans_activity_month 4754 non-null float64
trans_activity_day 4754 non-null float64
transd_mcc 4754 non-null float64
trans_days_interval_filter 4754 non-null float64
trans_days_interval 4754 non-null float64
regional_mobility 4754 non-null float64
repayment_capability 4754 non-null int64
is_high_user 4754 non-null int64
number_of_trans_from_2011 4754 non-null float64
first_transaction_time 4754 non-null float64
historical_trans_amount 4754 non-null int64
historical_trans_day 4754 non-null float64
rank_trad_1_month 4754 non-null float64
trans_amount_3_month 4754 non-null int64
avg_consume_less_12_valid_month 4754 non-null float64
abs 4754 non-null int64
top_trans_count_last_1_month 4754 non-null float64
avg_price_last_12_month 4754 non-null int64
avg_price_top_last_12_valid_month 4754 non-null float64
trans_top_time_last_1_month 4754 non-null float64
trans_top_time_last_6_month 4754 non-null float64
consume_top_time_last_1_month 4754 non-null float64
consume_top_time_last_6_month 4754 non-null float64
cross_consume_count_last_1_month 4754 non-null float64
trans_fail_top_count_enum_last_1_month 4754 non-null float64
trans_fail_top_count_enum_last_6_month 4754 non-null float64
trans_fail_top_count_enum_last_12_month 4754 non-null float64
consume_mini_time_last_1_month 4754 non-null float64
max_cumulative_consume_later_1_month 4754 non-null int64
max_consume_count_later_6_month 4754 non-null float64
railway_consume_count_last_12_month 4754 non-null float64
pawns_auctions_trusts_consume_last_1_month 4754 non-null int64
pawns_auctions_trusts_consume_last_6_month 4754 non-null int64
jewelry_consume_count_last_6_month 4754 non-null float64
status 4754 non-null int64
first_transaction_day 4754 non-null float64
trans_day_last_12_month 4754 non-null float64
apply_score 4754 non-null float64
apply_credibility 4754 non-null float64
query_org_count 4754 non-null float64
query_finance_count 4754 non-null float64
query_cash_count 4754 non-null float64
query_sum_count 4754 non-null float64
latest_one_month_apply 4754 non-null float64
latest_three_month_apply 4754 non-null float64
latest_six_month_apply 4754 non-null float64
loans_score 4754 non-null float64
loans_credibility_behavior 4754 non-null float64
loans_count 4754 non-null float64
loans_settle_count 4754 non-null float64
loans_overdue_count 4754 non-null float64
loans_org_count_behavior 4754 non-null float64
consfin_org_count_behavior 4754 non-null float64
loans_cash_count 4754 non-null float64
latest_one_month_loan 4754 non-null float64
latest_three_month_loan 4754 non-null float64
latest_six_month_loan 4754 non-null float64
history_suc_fee 4754 non-null float64
history_fail_fee 4754 non-null float64
latest_one_month_suc 4754 non-null float64
latest_one_month_fail 4754 non-null float64
loans_long_time 4754 non-null float64
loans_credit_limit 4754 non-null float64
loans_credibility_limit 4754 non-null float64
loans_org_count_current 4754 non-null float64
loans_product_count 4754 non-null float64
loans_max_limit 4754 non-null float64
loans_avg_limit 4754 non-null float64
consfin_credit_limit 4754 non-null float64
consfin_credibility 4754 non-null float64
consfin_org_count_current 4754 non-null float64
consfin_product_count 4754 non-null float64
consfin_max_limit 4754 non-null float64
consfin_avg_limit 4754 non-null float64
latest_query_day 4754 non-null float64
loans_latest_day 4754 non-null float64
reg_preference_for_trad 4754 non-null int64
latest_query_time_month 4754 non-null float64
latest_query_time_weekday 4754 non-null float64
loans_latest_time_month 4754 non-null float64
loans_latest_time_weekday 4754 non-null float64
dtypes: float64(73), int64(12)
memory usage: 3.1 MB
85列属性中,有73列是float型,12列是int型,并没有字符串型的属性,所以无需做额外处理。
而且可以看到每个特征都没有缺失值。也可以用另一个函数查看数据中缺失值的个数:
data.isnull().sum(axis=0)
输出:
low_volume_percent 0
middle_volume_percent 0
take_amount_in_later_12_month_highest 0
trans_amount_increase_rate_lately 0
trans_activity_month 0
trans_activity_day 0
transd_mcc 0
trans_days_interval_filter 0
trans_days_interval 0
regional_mobility 0
repayment_capability 0
is_high_user 0
number_of_trans_from_2011 0
first_transaction_time 0
historical_trans_amount 0
historical_trans_day 0
rank_trad_1_month 0
trans_amount_3_month 0
avg_consume_less_12_valid_month 0
abs 0
top_trans_count_last_1_month 0
avg_price_last_12_month 0
avg_price_top_last_12_valid_month 0
trans_top_time_last_1_month 0
trans_top_time_last_6_month 0
consume_top_time_last_1_month 0
consume_top_time_last_6_month 0
cross_consume_count_last_1_month 0
trans_fail_top_count_enum_last_1_month 0
trans_fail_top_count_enum_last_6_month 0
..
loans_org_count_behavior 0
consfin_org_count_behavior 0
loans_cash_count 0
latest_one_month_loan 0
latest_three_month_loan 0
latest_six_month_loan 0
history_suc_fee 0
history_fail_fee 0
latest_one_month_suc 0
latest_one_month_fail 0
loans_long_time 0
loans_credit_limit 0
loans_credibility_limit 0
loans_org_count_current 0
loans_product_count 0
loans_max_limit 0
loans_avg_limit 0
consfin_credit_limit 0
consfin_credibility 0
consfin_org_count_current 0
consfin_product_count 0
consfin_max_limit 0
consfin_avg_limit 0
latest_query_day 0
loans_latest_day 0
reg_preference_for_trad 0
latest_query_time_month 0
latest_query_time_weekday 0
loans_latest_time_month 0
loans_latest_time_weekday 0
Length: 85, dtype: int64
由于属性太多,这里没有显示全,可以将上述结果存起来,然后只输出有缺失值的列:
data_isnull = data.isnull().sum(axis=0)
data_isnull[data_isnull != 0]
输出:
Series([], dtype: int64)
series为空,说明所有列都是无缺失值的。
2.属性转换
虽然读取的数据中所有属性的数据类型都是数值型的,但实际上可能存在一些类别型属性,比如status是0和1两个类别,但是pandas会将其处理成数值的0和1。需要对这种情况进行额外处理。
对于这种类型的数据有两种处理方式,一种是one-hot encoding,把属性的每个取值对应成类似于00001这种形式。比如status有两个取值0和1,那么就可以编码成01和10。sklearn中有相应的函数,也可以用pandas的get_dummies(df)函数。另一种方式是label encoding,只要给每个属性的取值一个唯一的数字即可,比如某个属性是weekday,可以取周一到周日七个值,用label encoding就是0-7这七个数字即可。sklearn中也有相应的函数。
下面我们来看看这个数据中有没有需要转换的属性。
一般这种属性都是int型的,所以我们只看int型的那些属性都有多少个取值。在第一步中我们看到数据类型就是两种:float64和int64,可以用select_dtypes函数选出那些int64的列:
import numpy as np
column = data.select_dtypes(include=[np.int64]).columns
print(column)
for col in column:
print(col)
print(data[col].unique().shape)
输出:
Index(['take_amount_in_later_12_month_highest', 'repayment_capability',
'is_high_user', 'historical_trans_amount', 'trans_amount_3_month',
'abs', 'avg_price_last_12_month',
'max_cumulative_consume_later_1_month',
'pawns_auctions_trusts_consume_last_1_month',
'pawns_auctions_trusts_consume_last_6_month', 'status',
'reg_preference_for_trad'],
dtype='object')
take_amount_in_later_12_month_highest
(166,)
repayment_capability
(2390,)
is_high_user
(2,)
historical_trans_amount
(4524,)
trans_amount_3_month
(3524,)
abs
(1697,)
avg_price_last_12_month
(330,)
max_cumulative_consume_later_1_month
(863,)
pawns_auctions_trusts_consume_last_1_month
(572,)
pawns_auctions_trusts_consume_last_6_month
(2730,)
status
(2,)
reg_preference_for_trad
(5,)
根据属性的取值个数和属性名称大致可以判定该属性是否需要转换。看起来is_high_user和reg_preference_for_trad可能需要转换。
is_high_user只有两个取值,用value_counts函数看看每个取值有多少个:
data['is_high_user'].value_counts()
输出:
0 4701
1 53
Name: is_high_user, dtype: int64
is_high_user取值是0和1,只有两个取值的属性其实也无需转换。
再来看看另一个属性reg_preference_for_trad:
0 3405
1 1064
2 150
3 131
4 4
Name: reg_preference_for_trad, dtype: int64
reg_preference_for_trad有5个取值,如果要用one-hot encoding方式就要转换,如果用label encoding方式就无需转换。为了展示one-hot encoding的用法,这里我们用one-hot方式。
代码如下:
regcols = ['reg_preference_for_trad_' + str(i) for i in range(5)]
print(regcols)
tmpdf = pd.get_dummies(data['reg_preference_for_trad'].replace('nan', np.nan))
tmpdf.columns = regcols
data[regcols] = tmpdf
这样就多出了5列,分别代表0-4这4种取值。
['reg_preference_for_trad_0', 'reg_preference_for_trad_1', 'reg_preference_for_trad_2', 'reg_preference_for_trad_3', 'reg_preference_for_trad_4']
3.剔除不相关特征
由于属性列太多,不方便一一解释说明(况且我也不知道每个字段的含义ε=(´ο`*))))。属性列这么多,是不是都有用呢?这就跟我们的目标有关了。从之前的实验可以知道,我们希望预测用户贷款是否会逾期(对应的字段就是status),所以可以看每个属性跟status是否有关。
在这之前需要将X和y提取出来:
y = data['status']
X = data.drop(['status'], axis=1)
sklearn提供了特征选择的模块feature_selection,里面包含了一些函数,这里使用的是特征方差提取方式,默认方差为0的特征会删除。
from sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold()
print(X.shape)
X = selector.fit_transform(X)
print(X.shape)
输出:
(4754, 89)
(4754, 89)
没有剔除任何特征。。说明这里面每个特征多少还是有点用处,只是用处大小的不同罢了。
可以输出每个特征的方差看看:
array([1.72347223e-03, 2.09733428e-02, 1.53943134e+07, 4.81481182e+05,
3.87692950e-02, 2.89599675e-02, 2.00186059e+01, 5.15710959e+02,
2.71270743e+02, 7.92284964e-01, 2.72612789e+09, 1.10242173e-02,
1.01111554e+02, 2.19082523e+08, 1.02694235e+11, 9.93174477e+03,
6.96454281e-02, 1.03500977e+10, 1.93296547e+00, 7.29256913e+08,
1.22878638e-01, 5.86439064e+05, 9.86150936e-03, 2.83157843e+01,
1.67784749e+02, 2.97955539e+01, 1.72043674e+02, 5.03120265e+00,
3.64002171e+00, 1.98057119e+01, 2.25829209e+01, 1.39411696e+11,
1.16906146e+08, 3.22683811e+01, 2.28337441e-01, 4.37714017e+07,
7.94572765e+08, 4.06031438e-02, 2.88337722e+05, 3.63453287e+02,
2.51783949e+03, 1.63248201e+01, 4.78827044e+01, 1.36140674e+01,
6.51328333e+00, 1.22335903e+02, 2.02883578e+01, 5.63612962e+01,
8.29306545e+01, 3.62433789e+03, 4.68725564e+00, 5.84720597e+02,
4.51090812e+02, 9.62979328e+00, 5.40022384e+01, 8.46934738e+00,
2.86055044e+01, 2.15115553e+00, 1.16604483e+01, 1.15677503e+02,
8.68487650e+02, 6.08384690e+02, 3.63337054e+00, 1.43106069e+01,
1.23543567e+03, 4.71113041e+05, 1.10618434e+02, 2.86055044e+01,
3.29804734e+01, 2.10664740e+06, 5.13126727e+05, 5.58729026e+07,
1.98297162e+02, 8.46934738e+00, 1.11852954e+01, 1.92755652e+08,
3.39896154e+07, 1.33199490e+03, 2.83489836e+03, 4.72394037e-01,
1.77858966e+00, 3.73234062e+00, 8.92465960e+00, 3.59356702e+00,
2.03240714e-01, 1.73719927e-01, 3.05568245e-02, 2.67964236e-02,
8.40688770e-04])
有些特征的方差很大,有些特征的方差很小,其实看看特征的范围就大概能理解这一点了,方差大的特征大多是因为取值范围大,也不能完全靠这个说明特征与标签的相关性大小。可以设置阈值剔除一些不重要的特征,这里就不剔除了。
4.模型应用
根据之前的实验,选出一个模型看看效果即可。这里选择用虽然简单但效果好的逻辑回归模型。
def get_metric(clf, X, y_true):
y_pred = clf.predict(X)
y_proba = clf.predict_proba(X)
acc = metrics.accuracy_score(y_true, y_pred)
p = metrics.precision_score(y_true, y_pred)
r = metrics.recall_score(y_true, y_pred)
f1 = metrics.f1_score(y_true, y_pred)
fpr, tpr, thresholds = metrics.roc_curve(y_true, y_proba[:, 1])
auc = metrics.auc(fpr, tpr)
return acc, p, r, f1, fpr, tpr, auc
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegressionCV
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2018)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)
clf = LogisticRegressionCV(class_weight='balanced', max_iter=1000)
clf.fit(X_train, y_train)
acc, p, r, f1, fpr_train, tpr_train, auc_train = get_metric(clf, X_train, y_train)
print("train accuracy:{:.2%}, precision:{:.2%}, recall:{:.2%}, F1:{:.2}".format(acc, p, r, f1))
acc, p, r, f1, fpr_test, tpr_test, auc_test = get_metric(clf, X_test, y_test)
print("test accuracy:{:.2%}, precision:{:.2%}, recall:{:.2%}, F1:{:.2}".format(acc, p, r, f1))
plt.figure()
lw = 2
plt.plot(fpr_train, tpr_train, color='darkorange', lw=lw, label='train (AUC:%0.2f)' % auc_train)
plt.plot(fpr_test, tpr_test, color='cornflowerblue', lw=lw, label='test (AUC:%0.2f)' % auc_test)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic of LR')
plt.legend(loc="lower right")
plt.show()
输出:
train accuracy:76.28%, precision:52.01%, recall:69.78%, F1:0.6
test accuracy:72.32%, precision:46.51%, recall:66.85%, F1:0.55