📓
Study
  • README
  • Application
    • Contest
      • 竞赛trick
  • Basic Know
    • 半监督学习
    • 贝叶斯
      • 朴素贝叶斯分类器
    • 对抗训练
    • 概率图模型
      • CRF
      • HMM
      • 概率图模型
    • 关联分析
    • 归纳偏置
      • [什么是 Inductive bias(归纳偏置)?](BasicKnow/归纳偏置/什么是 Inductive bias(归纳偏置)?.md)
    • 聚类
    • 决策树
    • 绿色深度学习
    • 树模型&集成学习
      • 提升树
      • Ada Boost
      • [集成学习]
    • 特征工程
      • 数据分桶
      • 特征工程概述
      • 特征选择
      • LDA
      • PCA
    • 线性模型
      • 感知机
      • 最大熵模型
      • SVM
        • SVM支持向量机
      • 逻辑回归
      • 线性回归
    • 优化算法
      • 拉格朗日对偶性
      • 牛顿法
        • 牛顿法&拟牛顿法
      • 梯度下降法
        • 梯度下降算法
      • 优化算法
    • 预处理
      • [1-1]正则表达式
      • [1-2]文本预处理
      • [1-3]词性
      • [1-4]语法分析
      • [1-6]文本分类
      • [1-7]网络爬取
      • 【备用】正则表达式
      • 7.re模块
      • 词典匹配
      • 分词
      • 子表达式
      • Todo
    • 主题模型
      • LDA
    • Deep Learning
      • 反向传播
      • 梯度消失&梯度爆炸
      • Batch Size
      • 1.DLbasis
      • 小概念
      • MLstrategy
      • CNN
      • RNN及其应用
      • 关于深度学习实践
      • 神经网络概述
      • Batch Normalization
      • Program CNN
      • Program D Lbasis
      • Program DN Nimprove
      • Program Neural Style Transfer
      • Summer DL
    • EM算法
    • GAN
      • Gans In Action Master
    • GNN
      • 搜广推之GNN
      • Representation Learning
        • Anomalydetection
        • Conclusion
        • Others
        • Papernotes
        • Recommadation
    • k近邻法
      • K近邻
    • Language Model
      • 语言模型解码采样策略
      • [1-1][语言模型]从N-gram模型讲起
      • [1-2][语言模型]NNLM(神经网络语言模型)
      • [1-3][语言模型]基于RNN的语言模型
      • [1-4][语言模型]用N-gram来做完形填空
      • [1-5][语言模型]用KenLM来做完形填空
    • Loss Function
      • 常用损失函数
      • Focal Loss
      • softmax+交叉熵
    • Machine Learning
      • [基础]概念
      • 待整合
      • 交叉验证
      • 无监督学习
      • 优缺点
      • ML Yearning
      • SVD
    • Statistics Math
      • 程序员的数学基础课
      • 数学基础
      • 统计&高数
      • 统计题目
      • 线性代数
      • 组合数学
      • Discrete Choice Model
      • Nested Choice Model
  • Course Note
    • 基于TensorFlow的机器学习速成课程
      • [Key ML Terminology](CourseNote/基于TensorFlow的机器学习速成课程/Key ML Terminology.md)
    • 集训营
      • 任务说明
      • 算法实践1.1模型构建
      • 算法实践1.2模型构建之集成模型
      • 算法实践2.1数据预处理
    • 李宏毅机器学习
      • 10DNN训练Tips
        • Chapter 18
      • 16无监督学习
        • Chapter 25
    • 贪心NLP
      • 贪心NLP笔记
    • Cs 224 N 2019
      • [A Simple But Tough To Beat Baseline For Sentence Embeddings](CourseNote/cs224n2019/A Simple but Tough-to-beat Baseline for Sentence Embeddings.md)
      • [Lecture 01 Introduction And Word Vectors](CourseNote/cs224n2019/Lecture 01 Introduction and Word Vectors.md)
      • [Lecture 02 Word Vectors 2 And Word Senses](CourseNote/cs224n2019/Lecture 02 Word Vectors 2 and Word Senses.md)
      • [Lecture 03 Word Window Classification Neural Networks And Matrix Calculus](CourseNote/cs224n2019/Lecture 03 Word Window Classification, Neural Networks, and Matrix Calculus.md)
      • [Lecture 04 Backpropagation And Computation Graphs](CourseNote/cs224n2019/Lecture 04 Backpropagation and Computation Graphs.md)
      • [Lecture 05 Linguistic Structure Dependency Parsing](CourseNote/cs224n2019/Lecture 05 Linguistic Structure Dependency Parsing.md)
      • [Lecture 06 The Probability Of A Sentence Recurrent Neural Networks And Language Models](CourseNote/cs224n2019/Lecture 06 The probability of a sentence Recurrent Neural Networks and Language Models.md)
      • Stanford NLP
    • Deep Learning Book Goodfellow
      • Books
        • Deep Learning Book Chapter Summaries Master
      • 提纲
      • C 5
      • C 6
      • [Part I Applied Math And Machine Learning Basics](CourseNote/Deep-Learning-Book-Goodfellow/Part I - Applied Math and Machine Learning basics.md)
    • Lihang
    • NLP实战高手课
      • 极客时间_NLP实战高手课
    • 工具&资料
    • 机器学习、深度学习面试知识点汇总
    • 七月kaggle课程
    • 算法工程师
    • 贪心科技机器学习必修知识点特训营
    • 唐宇迪机器学习
    • 语言及工具
    • AI技术内参
    • Suggestions
  • Data Related
    • 数据质量
      • 置信学习
    • 自然语言处理中的数据增广_车万翔
      • 自然语言处理中的数据增广
    • Mixup
    • 数据不均衡问题
    • 数据增强的方法
  • Knowledge Graph
    • Information Extraction
      • 联合抽取
        • PRGC
      • Code
        • BERT微调
      • NER
        • 阅读理解做NER
          • MRC
        • FLAT
        • Global Pointer
        • 命名实体识别NER
    • Keyword Extraction
      • 关键词抽取
    • 小米在知识表示学习的探索与实践
    • KG
  • Multi Task
    • EXT 5
      • Ex T 5
  • NLG
    • Dailogue
      • 比赛
        • 对话评估比赛
          • [simpread-DSTC10 开放领域对话评估比赛冠军方法总结](NLG/Dailogue/比赛/对话评估比赛/simpread-DSTC10 开放领域对话评估比赛冠军方法总结.md)
      • 任务型对话
        • DST
          • DST概述
        • NLG
          • NLG概述
        • NLU
          • NLU概述
        • 任务型对话概述
        • simpread-任务型对话系统预训练最新研究进展
      • 问答型对话
        • 检索式问答
          • 基于预训练模型的检索式对话系统
          • 检索式文本问答
        • 业界分享
          • 低资源场景下的知识图谱表示学习和问答_阿里_李杨
          • QQ浏览器搜索智能问答
        • 问答型对话系统概述
      • 闲聊型对话
        • 闲聊型对话系统概述
      • 业界分享
        • 人工智能与心理咨询
        • 腾讯多轮对话机器人
        • 微软小冰
        • 小布助手闲聊生成式算法
        • 美团智能客服实践_江会星
        • 去哪儿智能客服探索和实践
        • 实时语音对话场景下的算法实践_阿里_陈克寒
        • 智能语音交互中的无效query识别_小米_崔世起
        • UNIT智能对话
      • 主动对话
      • EVA
        • EVA分享
        • EVA模型
      • PLATO
      • RASA
    • Machine Translation
      • 业界分享
        • 爱奇艺台词翻译分享
      • Paper
        • Deep Encoder Shallow Decoder
    • RAGRelated
    • Text 2 SQL
      • M SQL
        • [M SQL 2](NLG/Text2SQL/M-SQL/M-SQL (2).md)
      • [Text2SQL Baseline解析](NLG/Text2SQL/Text2SQL Baseline解析.md)
      • Text 2 SQL
    • Text Summarization
      • [文本摘要][paper]CTRLSUM
      • 文本摘要
  • Pre Training
    • 业界分享
      • 超大语言模型与语言理解_黄民烈
        • 超大语言模型与语言理解
      • 大模型的加速算法_腾讯微信
        • 大模型的加速算法
      • 孟子轻量化预训练模型
      • 悟道文汇文图生成模型
      • 悟道文澜图文多模态大模型
      • 语义驱动可视化内容创造_微软
        • 语义驱动可视化内容创造
    • Base
      • Attention
      • Mask
        • NLP中的Mask
      • Position Encoding
        • 位置编码
    • BERT
      • ALBERT
      • Bert
        • Venv
          • Lib
            • Site Packages
              • idna-3.2.dist-info
                • LICENSE
              • Markdown-3.3.4.dist-info
                • LICENSE
              • Tensorflow
                • Include
                  • External
                    • Libjpeg Turbo
                      • LICENSE
                  • Unsupported
                    • Eigen
                      • CXX 11
                        • Src
                          • Tensor
              • Werkzeug
                • Debug
                  • Shared
                    • ICON LICENSE
        • CONTRIBUTING
        • Multilingual
      • Ro BER Ta
      • BERT
      • BERT面试问答
      • BERT源码解析
      • NSP BERT
    • BERT Flow
    • BERT Zip
      • Distilling The Knowledge In A Neural Network
      • TINYBERT
      • 模型压缩
    • CPM
    • CPT
      • 兼顾理解和生成的中文预训练模型CPT
    • ELECTRA
    • EL Mo
    • ERNIE系列语言模型
    • GPT
    • MBART
    • NEZHA
    • NLG Sum
      • [simpread-预训练时代下的文本生成|模型 & 技巧](Pre-training/NLGSum/simpread-预训练时代下的文本生成|模型 & 技巧.md)
    • Prompt
      • 预训练模型的提示学习方法_刘知远
        • 预训练模型的提示学习方法
    • T 5
      • Unified SKG
      • T 5
    • Transformer
    • Uni LM
    • XL Net
    • 预训练语言模型
    • BERT变种
  • Recsys
    • 多任务Multi-task&推荐
    • 推荐介绍
    • 推荐系统之召回与精排
      • 代码
        • Python
          • Recall
            • Deep Match Master
              • Docs
                • Source
                  • Examples
                  • FAQ
                  • Features
                  • History
                  • Model Methods
                  • Quick Start
    • 业界分享
      • 腾讯基于知识图谱长视频推荐
    • 召回
    • Sparrow Rec Sys
    • 深度学习推荐系统实战
    • 推荐模型
    • Deep FM
  • Search
    • 搜索
    • 业界分享
      • 爱奇艺搜索排序算法实践
      • 语义搜索技术和应用
    • 查询关键字理解
    • 搜索排序
    • BM 25
    • KDD21-淘宝搜索中语义向量检索技术
    • query理解
    • TFIDF
  • Self Supervised Learning
    • Contrastive Learning
      • 业界分享
        • 对比学习在微博内容表示的应用_张俊林
      • Paper
      • R Drop
      • Sim CSE
    • 自监督学习
  • Text Classification
    • [多标签分类(Multi-label Classification)](TextClassification/多标签分类(Multi-label Classification)/多标签分类(Multi-label Classification).md)
    • Fast Text
    • Text CNN
    • 文本分类
  • Text Matching
    • 文本匹配和多轮检索
    • CNN SIM
    • Word Embedding
      • Skip Gram
      • Glove
      • Word 2 Vec
    • 文本匹配概述
  • Tool
    • 埋点
    • 向量检索(Faiss等)
    • Bigdata
      • 大数据基础task1_创建虚拟机+熟悉linux
      • 任务链接
      • Mr
      • Task1参考答案
      • Task2参考答案
      • Task3参考答案
      • Task4参考答案
      • Task5参考答案
    • Docker
    • Elasticsearch
    • Keras
    • Numpy
    • Python
      • 可视化
        • Interactivegraphics
        • Matplotlib
        • Tkinter
        • Turtle
      • 数据类型
        • Datatype
      • python爬虫
        • Python Scraping Master
          • phantomjs-2.1.1-windows
        • Regularexp
        • Scrapying
        • Selenium
      • 代码优化
      • 一行代码
      • 用python进行语言检测
      • Debug
      • Exception
      • [Features Tricks](Tool/python/Features & Tricks.md)
      • Fileprocess
      • Format
      • Functional Programming
      • I Python
      • Magic
      • Math
      • Os
      • Others
      • Pandas
      • Python Datastructure
      • Python操作数据库
      • Streamlit
      • Time
    • Pytorch
      • Dive Into DL Py Torch
        • 02 Softmax And Classification
        • 03 Mlp
        • 04 Underfit Overfit
        • 05 Gradient Vanishing Exploding
        • 06 Text Preprocess
        • 07 Language Model
        • 08 Rnn Basics
        • 09 Machine Translation
        • 10 Attention Seq 2 Seq
        • 11 Transformer
        • 12 Cnn
        • 14 Batchnorm Resnet
        • 15 Convexoptim
        • 16 Gradientdescent
        • 17 Optim Advance
    • Spark
      • Pyspark
        • pyspark之填充缺失的时间数据
      • Spark
    • SQL
      • 数据库
      • Hive Sql
      • MySQL实战45讲
    • Tensor Flow
      • TensorFlow入门
  • Common
  • NLP知识体系
Powered by GitBook
On this page
  • 分层softmax(还需补充)
  • 字符级别的n-gram
  • 模型架构
  • 核心思想
  • 分类效果
  • 优点
  • 源码解析
  • word2vec和fastText对比
  • Pytorch使用
  • 参考资料

Was this helpful?

  1. Text Classification

Fast Text

Previous[多标签分类(Multi-label Classification)](TextClassification/多标签分类(Multi-label Classification)/多标签分类(Multi-label Classification).md)NextText CNN

Last updated 3 years ago

Was this helpful?

fastText是一个快速文本分类算法,与基于神经网络的分类算法相比有两大优点: 1、fastText在保持高精度的情况下加快了训练速度和测试速度 2、fastText不需要预训练好的词向量,fastText会自己训练词向量 3、fastText两个重要的优化:Hierarchical Softmax、N-gram

分层softmax(还需补充)

word2vec将上下文关系转化为多分类任务,进而训练逻辑回归模型,这里的类别数量|V|词库大小。通常的文本数据中,词库少则数万,多则百万,在训练中直接训练多分类逻辑回归并不现实。word2vec中提供了两种针对大规模多分类问题的优化手段, negative sampling 和hierarchical softmax。在优化中,negative sampling 只更新少量负面类,从而减轻了计算量。hierarchical softmax 将词库表示成前缀树,从树根到叶子的路径可以表示为一系列二分类器,一次多分类计算的复杂度从|V|降低到了树的高度。

字符级别的n-gram

fastText使用了字符级别的n-grams来表示一个单词。对于单词“apple”,假设n的取值为3,则它的trigram有“”

其中,<表示前缀,>表示后缀。于是,我们可以用这些trigram来表示“apple”这个单词,进一步,我们可以用这5个trigram的向量叠加来表示“apple”的词向量。

这带来两点好处 :

  1. 对于低频词生成的词向量效果会更好。因为它们的n-gram可以和其它词共享。

  2. 对于训练词库之外的单词,仍然可以构建它们的词向量。我们可以叠加它们的字符级n-gram向量。

模型架构

fastText模型架构和word2vec中的CBOW很相似

注意:此架构图没有展示词向量的训练过程。可以看到,和CBOW一样,fastText模型也只有三层:输入层、隐含层、输出层(Hierarchical Softmax),输入都是多个经向量表示的单词,输出都是一个特定的target,隐含层都是对多个词向量的叠加平均。不同的是,CBOW的输入是目标单词的上下文,fastText的输入是多个单词及其n-gram特征,这些特征用来表示单个文档;CBOW的输入单词被onehot编码过,fastText的输入特征是被embedding过;CBOW的输出是目标词汇,fastText的输出是文档对应的类标。

值得注意的是,fastText在输入时,将单词的字符级别的n-gram向量作为额外的特征;在输出时,fastText采用了分层Softmax,大大降低了模型训练时间。

核心思想

仔细观察模型的后半部分,即从隐含层输出到输出层输出,会发现它就是一个softmax线性多类别分类器,分类器的输入是一个用来表征当前文档的向量;模型的前半部分,即从输入层输入到隐含层输出部分,主要在做一件事情:生成用来表征文档的向量。那么它是如何做的呢?叠加构成这篇文档的所有词及n-gram的词向量,然后取平均。叠加词向量背后的思想就是传统的词袋法,即将文档看成一个由词构成的集合。

于是fastText的核心思想就是:将整篇文档的词及n-gram向量叠加平均得到文档向量,然后使用文档向量做softmax多分类。这中间涉及到两个技巧:字符级n-gram特征的引入以及分层Softmax分类。

分类效果

还有个问题,就是为何fastText的分类效果常常不输于传统的非线性分类器?

假设我们有两段文本:

我 来到 达观数据

俺 去了 达而观信息科技

这两段文本意思几乎一模一样,如果要分类,肯定要分到同一个类中去。但在传统的分类器中,用来表征这两段文本的向量可能差距非常大。传统的文本分类中,你需要计算出每个词的权重,比如tfidf值, “我”和“俺” 算出的tfidf值相差可能会比较大,其它词类似,于是,VSM(向量空间模型)中用来表征这两段文本的文本向量差别可能比较大。但是fastText就不一样了,它是用单词的embedding叠加获得的文档向量,词向量的重要特点就是向量的距离可以用来衡量单词间的语义相似程度,于是,在fastText模型中,这两段文本的向量应该是非常相似的,于是,它们很大概率会被分到同一个类中。

使用词embedding而非词本身作为特征 ,这是fastText效果好的一个原因;另一个原因就是字符级n-gram特征的引入对分类效果会有一些提升 。

优点

使用n-gram有如下优点

1、为罕见的单词生成更好的单词向量:根据上面的字符级别的n-gram来说,即是这个单词出现的次数很少,但是组成单词的字符和其他单词有共享的部分,因此这一点可以优化生成的单词向量

2、在词汇单词中,即使单词没有出现在训练语料库中,仍然可以从字符级n-gram中构造单词的词向量

3、n-gram可以让模型学习到局部单词顺序的部分信息, 如果不考虑n-gram则便是取每个单词,这样无法考虑到词序所包含的信息,即也可理解为上下文信息,因此通过n-gram的方式关联相邻的几个词,这样会让模型在训练的时候保持词序信息

但随着语料库的增加,内存需求也会不断增加,严重影响模型构建速度,针对这个有以下几种解决方案:

1、过滤掉出现次数少的单词

2、使用hash存储

3、由采用字粒度变化为采用词粒度

源码解析

word2vec和fastText对比

1)都可以无监督学习词向量, fastText训练词向量时会考虑subword;

2)fastText还可以进行有监督学习进行文本分类,其主要特点:

  • 结构与CBOW类似,但学习目标是人工标注的分类结果;

  • 采用hierarchical softmax对输出的分类标签建立哈夫曼树,样本中标签多的类别被分配短的搜寻路径;

  • 引入N-gram,考虑词序特征;

  • 引入subword来处理长词,处理未登陆词问题;

Pytorch使用

class Config(object):

    """配置参数"""
    def __init__(self, dataset, embedding):
        self.model_name = 'FastText'
        self.train_path = dataset + '/data/train.txt'                                # 训练集
        self.dev_path = dataset + '/data/dev.txt'                                    # 验证集
        self.test_path = dataset + '/data/test.txt'                                  # 测试集
        self.class_list = [x.strip() for x in open(
            dataset + '/data/class.txt', encoding='utf-8').readlines()]              # 类别名单
        self.vocab_path = dataset + '/data/vocab.pkl'                                # 词表
        self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'        # 模型训练结果
        self.log_path = dataset + '/log/' + self.model_name
        self.embedding_pretrained = torch.tensor(
            np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\
            if embedding != 'random' else None                                       # 预训练词向量
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')   # 设备

        self.dropout = 0.5                                              # 随机失活
        self.require_improvement = 1000                                 # 若超过1000batch效果还没提升,则提前结束训练
        self.num_classes = len(self.class_list)                         # 类别数
        self.n_vocab = 0                                                # 词表大小,在运行时赋值
        self.num_epochs = 20                                            # epoch数
        self.batch_size = 128                                           # mini-batch大小
        self.pad_size = 32                                              # 每句话处理成的长度(短填长切)
        self.learning_rate = 1e-3                                       # 学习率
        self.embed = self.embedding_pretrained.size(1)\
            if self.embedding_pretrained is not None else 300           # 字向量维度
        self.hidden_size = 256                                          # 隐藏层大小
        self.n_gram_vocab = 250499                                      # ngram 词表大小


'''Bag of Tricks for Efficient Text Classification'''


class Model(nn.Module):
    def __init__(self, config):
        super(Model, self).__init__()
        if config.embedding_pretrained is not None:
            self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
        else:
            self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
        self.embedding_ngram2 = nn.Embedding(config.n_gram_vocab, config.embed)
        self.embedding_ngram3 = nn.Embedding(config.n_gram_vocab, config.embed)
        self.dropout = nn.Dropout(config.dropout)
        self.fc1 = nn.Linear(config.embed * 3, config.hidden_size)
        # self.dropout2 = nn.Dropout(config.dropout)
        self.fc2 = nn.Linear(config.hidden_size, config.num_classes)

    def forward(self, x):

        out_word = self.embedding(x[0])
        out_bigram = self.embedding_ngram2(x[2])
        out_trigram = self.embedding_ngram3(x[3])
        out = torch.cat((out_word, out_bigram, out_trigram), -1)

        out = out.mean(dim=1)
        out = self.dropout(out)
        out = self.fc1(out)
        out = F.relu(out)
        out = self.fc2(out)
        return out

参考资料

(包括原理介绍和实战——官方文档的翻译)

fastText原理和文本分类实战,看这一篇就够了
fastText原理及实践