📓
Study
  • README
  • Application
    • Contest
      • 竞赛trick
  • Basic Know
    • 半监督学习
    • 贝叶斯
      • 朴素贝叶斯分类器
    • 对抗训练
    • 概率图模型
      • CRF
      • HMM
      • 概率图模型
    • 关联分析
    • 归纳偏置
      • [什么是 Inductive bias(归纳偏置)?](BasicKnow/归纳偏置/什么是 Inductive bias(归纳偏置)?.md)
    • 聚类
    • 决策树
    • 绿色深度学习
    • 树模型&集成学习
      • 提升树
      • Ada Boost
      • [集成学习]
    • 特征工程
      • 数据分桶
      • 特征工程概述
      • 特征选择
      • LDA
      • PCA
    • 线性模型
      • 感知机
      • 最大熵模型
      • SVM
        • SVM支持向量机
      • 逻辑回归
      • 线性回归
    • 优化算法
      • 拉格朗日对偶性
      • 牛顿法
        • 牛顿法&拟牛顿法
      • 梯度下降法
        • 梯度下降算法
      • 优化算法
    • 预处理
      • [1-1]正则表达式
      • [1-2]文本预处理
      • [1-3]词性
      • [1-4]语法分析
      • [1-6]文本分类
      • [1-7]网络爬取
      • 【备用】正则表达式
      • 7.re模块
      • 词典匹配
      • 分词
      • 子表达式
      • Todo
    • 主题模型
      • LDA
    • Deep Learning
      • 反向传播
      • 梯度消失&梯度爆炸
      • Batch Size
      • 1.DLbasis
      • 小概念
      • MLstrategy
      • CNN
      • RNN及其应用
      • 关于深度学习实践
      • 神经网络概述
      • Batch Normalization
      • Program CNN
      • Program D Lbasis
      • Program DN Nimprove
      • Program Neural Style Transfer
      • Summer DL
    • EM算法
    • GAN
      • Gans In Action Master
    • GNN
      • 搜广推之GNN
      • Representation Learning
        • Anomalydetection
        • Conclusion
        • Others
        • Papernotes
        • Recommadation
    • k近邻法
      • K近邻
    • Language Model
      • 语言模型解码采样策略
      • [1-1][语言模型]从N-gram模型讲起
      • [1-2][语言模型]NNLM(神经网络语言模型)
      • [1-3][语言模型]基于RNN的语言模型
      • [1-4][语言模型]用N-gram来做完形填空
      • [1-5][语言模型]用KenLM来做完形填空
    • Loss Function
      • 常用损失函数
      • Focal Loss
      • softmax+交叉熵
    • Machine Learning
      • [基础]概念
      • 待整合
      • 交叉验证
      • 无监督学习
      • 优缺点
      • ML Yearning
      • SVD
    • Statistics Math
      • 程序员的数学基础课
      • 数学基础
      • 统计&高数
      • 统计题目
      • 线性代数
      • 组合数学
      • Discrete Choice Model
      • Nested Choice Model
  • Course Note
    • 基于TensorFlow的机器学习速成课程
      • [Key ML Terminology](CourseNote/基于TensorFlow的机器学习速成课程/Key ML Terminology.md)
    • 集训营
      • 任务说明
      • 算法实践1.1模型构建
      • 算法实践1.2模型构建之集成模型
      • 算法实践2.1数据预处理
    • 李宏毅机器学习
      • 10DNN训练Tips
        • Chapter 18
      • 16无监督学习
        • Chapter 25
    • 贪心NLP
      • 贪心NLP笔记
    • Cs 224 N 2019
      • [A Simple But Tough To Beat Baseline For Sentence Embeddings](CourseNote/cs224n2019/A Simple but Tough-to-beat Baseline for Sentence Embeddings.md)
      • [Lecture 01 Introduction And Word Vectors](CourseNote/cs224n2019/Lecture 01 Introduction and Word Vectors.md)
      • [Lecture 02 Word Vectors 2 And Word Senses](CourseNote/cs224n2019/Lecture 02 Word Vectors 2 and Word Senses.md)
      • [Lecture 03 Word Window Classification Neural Networks And Matrix Calculus](CourseNote/cs224n2019/Lecture 03 Word Window Classification, Neural Networks, and Matrix Calculus.md)
      • [Lecture 04 Backpropagation And Computation Graphs](CourseNote/cs224n2019/Lecture 04 Backpropagation and Computation Graphs.md)
      • [Lecture 05 Linguistic Structure Dependency Parsing](CourseNote/cs224n2019/Lecture 05 Linguistic Structure Dependency Parsing.md)
      • [Lecture 06 The Probability Of A Sentence Recurrent Neural Networks And Language Models](CourseNote/cs224n2019/Lecture 06 The probability of a sentence Recurrent Neural Networks and Language Models.md)
      • Stanford NLP
    • Deep Learning Book Goodfellow
      • Books
        • Deep Learning Book Chapter Summaries Master
      • 提纲
      • C 5
      • C 6
      • [Part I Applied Math And Machine Learning Basics](CourseNote/Deep-Learning-Book-Goodfellow/Part I - Applied Math and Machine Learning basics.md)
    • Lihang
    • NLP实战高手课
      • 极客时间_NLP实战高手课
    • 工具&资料
    • 机器学习、深度学习面试知识点汇总
    • 七月kaggle课程
    • 算法工程师
    • 贪心科技机器学习必修知识点特训营
    • 唐宇迪机器学习
    • 语言及工具
    • AI技术内参
    • Suggestions
  • Data Related
    • 数据质量
      • 置信学习
    • 自然语言处理中的数据增广_车万翔
      • 自然语言处理中的数据增广
    • Mixup
    • 数据不均衡问题
    • 数据增强的方法
  • Knowledge Graph
    • Information Extraction
      • 联合抽取
        • PRGC
      • Code
        • BERT微调
      • NER
        • 阅读理解做NER
          • MRC
        • FLAT
        • Global Pointer
        • 命名实体识别NER
    • Keyword Extraction
      • 关键词抽取
    • 小米在知识表示学习的探索与实践
    • KG
  • Multi Task
    • EXT 5
      • Ex T 5
  • NLG
    • Dailogue
      • 比赛
        • 对话评估比赛
          • [simpread-DSTC10 开放领域对话评估比赛冠军方法总结](NLG/Dailogue/比赛/对话评估比赛/simpread-DSTC10 开放领域对话评估比赛冠军方法总结.md)
      • 任务型对话
        • DST
          • DST概述
        • NLG
          • NLG概述
        • NLU
          • NLU概述
        • 任务型对话概述
        • simpread-任务型对话系统预训练最新研究进展
      • 问答型对话
        • 检索式问答
          • 基于预训练模型的检索式对话系统
          • 检索式文本问答
        • 业界分享
          • 低资源场景下的知识图谱表示学习和问答_阿里_李杨
          • QQ浏览器搜索智能问答
        • 问答型对话系统概述
      • 闲聊型对话
        • 闲聊型对话系统概述
      • 业界分享
        • 人工智能与心理咨询
        • 腾讯多轮对话机器人
        • 微软小冰
        • 小布助手闲聊生成式算法
        • 美团智能客服实践_江会星
        • 去哪儿智能客服探索和实践
        • 实时语音对话场景下的算法实践_阿里_陈克寒
        • 智能语音交互中的无效query识别_小米_崔世起
        • UNIT智能对话
      • 主动对话
      • EVA
        • EVA分享
        • EVA模型
      • PLATO
      • RASA
    • Machine Translation
      • 业界分享
        • 爱奇艺台词翻译分享
      • Paper
        • Deep Encoder Shallow Decoder
    • RAGRelated
    • Text 2 SQL
      • M SQL
        • [M SQL 2](NLG/Text2SQL/M-SQL/M-SQL (2).md)
      • [Text2SQL Baseline解析](NLG/Text2SQL/Text2SQL Baseline解析.md)
      • Text 2 SQL
    • Text Summarization
      • [文本摘要][paper]CTRLSUM
      • 文本摘要
  • Pre Training
    • 业界分享
      • 超大语言模型与语言理解_黄民烈
        • 超大语言模型与语言理解
      • 大模型的加速算法_腾讯微信
        • 大模型的加速算法
      • 孟子轻量化预训练模型
      • 悟道文汇文图生成模型
      • 悟道文澜图文多模态大模型
      • 语义驱动可视化内容创造_微软
        • 语义驱动可视化内容创造
    • Base
      • Attention
      • Mask
        • NLP中的Mask
      • Position Encoding
        • 位置编码
    • BERT
      • ALBERT
      • Bert
        • Venv
          • Lib
            • Site Packages
              • idna-3.2.dist-info
                • LICENSE
              • Markdown-3.3.4.dist-info
                • LICENSE
              • Tensorflow
                • Include
                  • External
                    • Libjpeg Turbo
                      • LICENSE
                  • Unsupported
                    • Eigen
                      • CXX 11
                        • Src
                          • Tensor
              • Werkzeug
                • Debug
                  • Shared
                    • ICON LICENSE
        • CONTRIBUTING
        • Multilingual
      • Ro BER Ta
      • BERT
      • BERT面试问答
      • BERT源码解析
      • NSP BERT
    • BERT Flow
    • BERT Zip
      • Distilling The Knowledge In A Neural Network
      • TINYBERT
      • 模型压缩
    • CPM
    • CPT
      • 兼顾理解和生成的中文预训练模型CPT
    • ELECTRA
    • EL Mo
    • ERNIE系列语言模型
    • GPT
    • MBART
    • NEZHA
    • NLG Sum
      • [simpread-预训练时代下的文本生成|模型 & 技巧](Pre-training/NLGSum/simpread-预训练时代下的文本生成|模型 & 技巧.md)
    • Prompt
      • 预训练模型的提示学习方法_刘知远
        • 预训练模型的提示学习方法
    • T 5
      • Unified SKG
      • T 5
    • Transformer
    • Uni LM
    • XL Net
    • 预训练语言模型
    • BERT变种
  • Recsys
    • 多任务Multi-task&推荐
    • 推荐介绍
    • 推荐系统之召回与精排
      • 代码
        • Python
          • Recall
            • Deep Match Master
              • Docs
                • Source
                  • Examples
                  • FAQ
                  • Features
                  • History
                  • Model Methods
                  • Quick Start
    • 业界分享
      • 腾讯基于知识图谱长视频推荐
    • 召回
    • Sparrow Rec Sys
    • 深度学习推荐系统实战
    • 推荐模型
    • Deep FM
  • Search
    • 搜索
    • 业界分享
      • 爱奇艺搜索排序算法实践
      • 语义搜索技术和应用
    • 查询关键字理解
    • 搜索排序
    • BM 25
    • KDD21-淘宝搜索中语义向量检索技术
    • query理解
    • TFIDF
  • Self Supervised Learning
    • Contrastive Learning
      • 业界分享
        • 对比学习在微博内容表示的应用_张俊林
      • Paper
      • R Drop
      • Sim CSE
    • 自监督学习
  • Text Classification
    • [多标签分类(Multi-label Classification)](TextClassification/多标签分类(Multi-label Classification)/多标签分类(Multi-label Classification).md)
    • Fast Text
    • Text CNN
    • 文本分类
  • Text Matching
    • 文本匹配和多轮检索
    • CNN SIM
    • Word Embedding
      • Skip Gram
      • Glove
      • Word 2 Vec
    • 文本匹配概述
  • Tool
    • 埋点
    • 向量检索(Faiss等)
    • Bigdata
      • 大数据基础task1_创建虚拟机+熟悉linux
      • 任务链接
      • Mr
      • Task1参考答案
      • Task2参考答案
      • Task3参考答案
      • Task4参考答案
      • Task5参考答案
    • Docker
    • Elasticsearch
    • Keras
    • Numpy
    • Python
      • 可视化
        • Interactivegraphics
        • Matplotlib
        • Tkinter
        • Turtle
      • 数据类型
        • Datatype
      • python爬虫
        • Python Scraping Master
          • phantomjs-2.1.1-windows
        • Regularexp
        • Scrapying
        • Selenium
      • 代码优化
      • 一行代码
      • 用python进行语言检测
      • Debug
      • Exception
      • [Features Tricks](Tool/python/Features & Tricks.md)
      • Fileprocess
      • Format
      • Functional Programming
      • I Python
      • Magic
      • Math
      • Os
      • Others
      • Pandas
      • Python Datastructure
      • Python操作数据库
      • Streamlit
      • Time
    • Pytorch
      • Dive Into DL Py Torch
        • 02 Softmax And Classification
        • 03 Mlp
        • 04 Underfit Overfit
        • 05 Gradient Vanishing Exploding
        • 06 Text Preprocess
        • 07 Language Model
        • 08 Rnn Basics
        • 09 Machine Translation
        • 10 Attention Seq 2 Seq
        • 11 Transformer
        • 12 Cnn
        • 14 Batchnorm Resnet
        • 15 Convexoptim
        • 16 Gradientdescent
        • 17 Optim Advance
    • Spark
      • Pyspark
        • pyspark之填充缺失的时间数据
      • Spark
    • SQL
      • 数据库
      • Hive Sql
      • MySQL实战45讲
    • Tensor Flow
      • TensorFlow入门
  • Common
  • NLP知识体系
Powered by GitBook
On this page
  • 概念
  • 知识图谱的表示
  • 知识抽取
  • 知识图谱的存储
  • 知识图谱的搭建
  • 实践上的几点建议
  • 知识图谱介绍
  • 知识图谱的应用场景
  • 如何构建知识图谱
  • 知识图谱数据集
  • 图数据库

Was this helpful?

  1. Knowledge Graph

KG

概念

知识图谱本质上是语义网络(Semantic Network)的知识库

可以简单地把知识图谱理解成多关系图(Multi-relational Graph)

知识图谱的表示

知识图谱应用的前提是已经构建好了知识图谱,也可以把它认为是一个知识库。

知识抽取

知识图谱的构建是后续应用的基础,而且构建的前提是需要把数据从不同的数据源中抽取出来。对于垂直领域的知识图谱来说,它们的数据源主要来自两种渠道:一种是业务本身的数据,这部分数据通常包含在公司内的数据库表并以结构化的方式存储;另一种是网络上公开、抓取的数据,这些数据通常是以网页的形式存在所以是非结构化的数据。

在构建类似的图谱过程当中,主要涉及以下几个方面的自然语言处理技术:

a. 实体命名识别(Name Entity Recognition)

b. 关系抽取(Relation Extraction)

c. 实体统一(Entity Resolution)

d. 指代消解(Coreference Resolution)

实体统一和指代消解问题相对于前两个问题更具有挑战性。

知识图谱的存储

知识图谱主要有两种存储方式:一种是基于RDF的存储;另一种是基于图数据库的存储。

首先需要说明的一点是,有可能不少人认为搭建一个知识图谱系统的重点在于算法和开发。但事实并不是想象中的那样,其实最重要的核心在于对业务的理解以及对知识图谱本身的设计,这就类似于对于一个业务系统,数据库表的设计尤其关键,而且这种设计绝对离不开对业务的深入理解以及对未来业务场景变化的预估。

知识图谱的搭建

一个完整的知识图谱的构建包含以下几个步骤:1. 定义具体的业务问题 2. 数据的收集 & 预处理 3. 知识图谱的设计 4. 把数据存入知识图谱 5. 上层应用的开发,以及系统的评估。

1 定义具体的业务问题

2 数据收集 & 预处理

  1. 我们已经有哪些数据? 2. 虽然现在没有,但有可能拿到哪些数据? 3. 其中哪部分数据可以用来降低风险? 4. 哪部分数据可以用来构建知识图谱?

3 知识图谱的设计

图谱的设计是一门艺术,不仅要对业务有很深的理解、也需要对未来业务可能的变化有一定预估,从而设计出最贴近现状并且性能高效的系统。在知识图谱设计的问题上,我们肯定会面临以下几个常见的问题:1. 需要哪些实体、关系和属性? 2. 哪些属性可以做为实体,哪些实体可以作为属性? 3. 哪些信息不需要放在知识图谱中?

业务原则(Business Principle),它的含义是 “一切要从业务逻辑出发,并且通过观察知识图谱的设计也很容易推测其背后业务的逻辑,而且设计时也要想好未来业务可能的变化”。

效率原则(Efficiency Principle)。 效率原则让知识图谱尽量轻量化、并决定哪些数据放在知识图谱,哪些数据不需要放在知识图谱。 效率原则的核心在于把知识图谱设计成小而轻的存储载体。

4 把数据存入知识图谱

存储上我们要面临存储系统的选择,但由于我们设计的知识图谱带有属性,图数据库可以作为首选。但至于选择哪个图数据库也要看业务量以及对效率的要求。如果数据量特别庞大,则Neo4j很可能满足不了业务的需求,这时候不得不去选择支持准分布式的系统比如OrientDB, JanusGraph等,或者通过效率、冗余原则把信息存放在传统数据库中,从而减少知识图谱所承载的信息量。 通常来讲,对于10亿节点以下规模的图谱来说Neo4j已经足够了。

5 上层应用的开发

等我们构建好知识图谱之后,接下来就要使用它来解决具体的问题。对于风控知识图谱来说,首要任务就是挖掘关系网络中隐藏的欺诈风险。从算法的角度来讲,有两种不同的场景:一种是基于规则的;另一种是基于概率的。鉴于目前AI技术的现状,基于规则的方法论还是在垂直领域的应用中占据主导地位,但随着数据量的增加以及方法论的提升,基于概率的模型也将会逐步带来更大的价值。

5.1 基于规则的方法论

不一致性验证

为了判断关系网络中存在的风险,一种简单的方法就是做不一致性验证,也就是通过一些规则去找出潜在的矛盾点。这些规则是以人为的方式提前定义好的,所以在设计规则这个事情上需要一些业务的知识。

基于规则提取特征

我们也可以基于规则从知识图谱中提取一些特征,而且这些特征一般基于深度的搜索比如2度,3度甚至更高维度。比如我们可以问一个这样的问题:“申请人二度关系里有多少个实体触碰了黑名单?”。等这些特征被提取之后,一般可以作为风险模型的输入。在此还是想说明一点,如果特征并不涉及深度的关系,其实传统的关系型数据库则足以满足需求。

基于模式的判断

这种方法比较适用于找出团体欺诈,它的核心在于通过一些模式来找到有可能存在风险的团体或者子图(sub-graph),然后对这部分子图做进一步的分析。

再比如,我们也可以从知识图谱中找出强连通图,并把它标记出来,然后做进一步风险分析。强连通图意味着每一个节点都可以通过某种路径达到其他的点,也就说明这些节点之间有很强的关系。

5.2 基于概率的方法

除了基于规则的方法,也可以使用概率统计的方法。 比如社区挖掘、标签传播、聚类等技术都属于这个范畴。

相比规则的方法论,基于概率的方法的缺点在于:需要足够多的数据。如果数据量很少,而且整个图谱比较稀疏(Sparse),基于规则的方法可以成为我们的首选。尤其是对于金融领域来说,数据标签会比较少,这也是为什么基于规则的方法论还是更普遍地应用在金融领域中的主要原因。

5.3 基于动态网络的分析

dynamic network mining

实践上的几点建议

首先,知识图谱是一个比较新的工具,它的主要作用还是在于分析关系,尤其是深度的关系。所以在业务上,首先要确保它的必要性,其实很多问题可以用非知识图谱的方式来解决。

知识图谱领域一个最重要的话题是知识的推理。 而且知识的推理是走向强人工智能的必经之路。但很遗憾的,目前很多语义网络的角度讨论的推理技术(比如基于深度学习,概率统计)很难在实际的垂直应用中落地。其实目前最有效的方式还是基于一些规则的方法论,除非我们有非常庞大的数据集。

最后,还是要强调一点,知识图谱工程本身还是业务为重心,以数据为中心。不要低估业务和数据的重要性。

https://mp.weixin.qq.com/s/j94s-jQjJ11zXSDD_uEcAA

知识图谱介绍

本质:一种语义网络,将客观事实和经验沉淀在一个巨大的网络中。

包含内容:实体,概念,语义关系,属性。

本体 VS 实体

  • 本体:人

  • 实体:张三,小红

知识图谱的应用场景

业务应用场景

  • 图结构消费场景

    • 图数据搜索

    • 路径分析

    • 关联分析

    • 图谱可视化

  • 语义消费场景

    • 智能搜索,例如姚明的女儿是谁

    • 智能客服

    • 语义标注,例如远程监督标注数据。

    • 知识推理

数据场景

从知识图谱的产品形式来说

  • 基于百科和常识的通用型知识图谱

    • 特点:数据庞大

    • 问题:构建难

    • 例子:谷歌,百度等

  • 基于垂直领域的知识图谱

    • 特点:针对具体的业务

    • 问题:具有一定的边界

    • 例子:金融、法律、医疗等

    • 应用介绍

      • 可以在营销方面做客户挖掘、需求挖掘

      • 在风控方面做反欺诈、反洗钱、内控等

      • 在预测应用方面可以预测行业风险等

  • 知识图谱组件

    • 特点:围绕知识图谱的构建一些相关组件产品

    • 例子:本体编辑器,关系抽取器,垂直搜索等

    • 行业:大观数据

  • 知识标准化

    • 知识图谱构建过程标准化、流程化、自动化

    • 落地难

如何构建知识图谱

知识图谱的逻辑架构

模式层(本体库构建)

  • 特点:知识图谱的核心,是构建在数据层之上,定义通用概念为实体,实体间的关系

  • 举例:实体-关系-实体,实体-属性-性值

数据层

构建流程

信息抽取

抽取实体、关系、属性等

方法路线

  • pipeline信息抽取

    • 命名实体识别

    • 关系抽取

    • 属性抽取

    • 优点:独立数据集,不需要同时标注

    • 缺点:误差积累,实体冗余,交互缺失

  • 实体关系联合抽取

知识融合

任务

  • 新知识的融合

  • 整合

  • 判别同义

  • 近义

  • 消除歧义

  • 矛盾

实体链接

  • 实体消歧

  • 共指消解

知识加工

知识图谱数据集

中文开放知识图谱:http://www.openkg.cn/

图数据库

Neo4j

Nebula

思知知识图谱,他有提供免费的开放知识图谱接口

Previous小米在知识表示学习的探索与实践NextMulti Task

Last updated 2 years ago

Was this helpful?

1529557366042
1529557497252
1529557566320
1529557653590
1529557698766
image-20210814202904328